sweep: introduce BudgetAggregator to cluster inputs by deadlines

This commit adds `BudgetAggregator` as a new implementation of
`UtxoAggregator`. This aggregator will group inputs by their deadline
heights and create input sets that can be used directly by the fee
bumper for fee calculations.
This commit is contained in:
yyforyongyu 2024-02-27 21:54:48 +08:00
parent e7400f6a94
commit a088501e47
No known key found for this signature in database
GPG Key ID: 9BCD95C4FF296868
3 changed files with 787 additions and 0 deletions

View File

@ -123,3 +123,48 @@ func (m *MockInput) UnconfParent() *TxInfo {
return info.(*TxInfo)
}
// MockWitnessType implements the `WitnessType` interface and is used by other
// packages for mock testing.
type MockWitnessType struct {
mock.Mock
}
// Compile time assertion that MockWitnessType implements WitnessType.
var _ WitnessType = (*MockWitnessType)(nil)
// String returns a human readable version of the WitnessType.
func (m *MockWitnessType) String() string {
args := m.Called()
return args.String(0)
}
// WitnessGenerator will return a WitnessGenerator function that an output uses
// to generate the witness and optionally the sigScript for a sweep
// transaction.
func (m *MockWitnessType) WitnessGenerator(signer Signer,
descriptor *SignDescriptor) WitnessGenerator {
args := m.Called()
return args.Get(0).(WitnessGenerator)
}
// SizeUpperBound returns the maximum length of the witness of this WitnessType
// if it would be included in a tx. It also returns if the output itself is a
// nested p2sh output, if so then we need to take into account the extra
// sigScript data size.
func (m *MockWitnessType) SizeUpperBound() (int, bool, error) {
args := m.Called()
return args.Int(0), args.Bool(1), args.Error(2)
}
// AddWeightEstimation adds the estimated size of the witness in bytes to the
// given weight estimator.
func (m *MockWitnessType) AddWeightEstimation(e *TxWeightEstimator) error {
args := m.Called()
return args.Error(0)
}

View File

@ -3,7 +3,10 @@ package sweep
import (
"sort"
"github.com/btcsuite/btcd/btcutil"
"github.com/btcsuite/btcd/wire"
"github.com/lightningnetwork/lnd/fn"
"github.com/lightningnetwork/lnd/lnwallet"
"github.com/lightningnetwork/lnd/lnwallet/chainfee"
)
@ -461,3 +464,232 @@ func zipClusters(as, bs []inputCluster) []inputCluster {
return finalClusters
}
// BudgetAggregator is a budget-based aggregator that creates clusters based on
// deadlines and budgets of inputs.
type BudgetAggregator struct {
// estimator is used when crafting sweep transactions to estimate the
// necessary fee relative to the expected size of the sweep
// transaction.
estimator chainfee.Estimator
// maxInputs specifies the maximum number of inputs allowed in a single
// sweep tx.
maxInputs uint32
}
// Compile-time constraint to ensure BudgetAggregator implements UtxoAggregator.
var _ UtxoAggregator = (*BudgetAggregator)(nil)
// NewBudgetAggregator creates a new instance of a BudgetAggregator.
func NewBudgetAggregator(estimator chainfee.Estimator,
maxInputs uint32) *BudgetAggregator {
return &BudgetAggregator{
estimator: estimator,
maxInputs: maxInputs,
}
}
// clusterGroup defines an alias for a set of inputs that are to be grouped.
type clusterGroup map[fn.Option[int32]][]pendingInput
// ClusterInputs creates a list of input sets from pending inputs.
// 1. filter out inputs whose budget cannot cover min relay fee.
// 2. group the inputs into clusters based on their deadline height.
// 3. sort the inputs in each cluster by their budget.
// 4. optionally split a cluster if it exceeds the max input limit.
// 5. create input sets from each of the clusters.
func (b *BudgetAggregator) ClusterInputs(inputs pendingInputs) []InputSet {
// Filter out inputs that have a budget below min relay fee.
filteredInputs := b.filterInputs(inputs)
// Create clusters to group inputs based on their deadline height.
clusters := make(clusterGroup, len(filteredInputs))
// Iterate all the inputs and group them based on their specified
// deadline heights.
for _, input := range filteredInputs {
height := input.params.DeadlineHeight
cluster, ok := clusters[height]
if !ok {
cluster = make([]pendingInput, 0)
}
cluster = append(cluster, *input)
clusters[height] = cluster
}
// Now that we have the clusters, we can create the input sets.
//
// NOTE: cannot pre-allocate the slice since we don't know the number
// of input sets in advance.
inputSets := make([]InputSet, 0)
for _, cluster := range clusters {
// Sort the inputs by their economical value.
sortedInputs := b.sortInputs(cluster)
// Create input sets from the cluster.
sets := b.createInputSets(sortedInputs)
inputSets = append(inputSets, sets...)
}
return inputSets
}
// createInputSet takes a set of inputs which share the same deadline height
// and turns them into a list of `InputSet`, each set is then used to create a
// sweep transaction.
func (b *BudgetAggregator) createInputSets(inputs []pendingInput) []InputSet {
// sets holds the InputSets that we will return.
sets := make([]InputSet, 0)
// Copy the inputs to a new slice so we can modify it.
remainingInputs := make([]pendingInput, len(inputs))
copy(remainingInputs, inputs)
// If the number of inputs is greater than the max inputs allowed, we
// will split them into smaller clusters.
for uint32(len(remainingInputs)) > b.maxInputs {
log.Tracef("Cluster has %v inputs, max is %v, dividing...",
len(inputs), b.maxInputs)
// Copy the inputs to be put into the new set, and update the
// remaining inputs by removing currentInputs.
currentInputs := make([]pendingInput, b.maxInputs)
copy(currentInputs, remainingInputs[:b.maxInputs])
remainingInputs = remainingInputs[b.maxInputs:]
// Create an InputSet using the max allowed number of inputs.
set, err := NewBudgetInputSet(currentInputs)
if err != nil {
log.Errorf("unable to create input set: %v", err)
continue
}
sets = append(sets, set)
}
// Create an InputSet from the remaining inputs.
if len(remainingInputs) > 0 {
set, err := NewBudgetInputSet(remainingInputs)
if err != nil {
log.Errorf("unable to create input set: %v", err)
return nil
}
sets = append(sets, set)
}
return sets
}
// filterInputs filters out inputs that have a budget below the min relay fee
// or have a required output that's below the dust.
func (b *BudgetAggregator) filterInputs(inputs pendingInputs) pendingInputs {
// Get the current min relay fee for this round.
minFeeRate := b.estimator.RelayFeePerKW()
// filterInputs stores a map of inputs that has a budget that at least
// can pay the minimal fee.
filteredInputs := make(pendingInputs, len(inputs))
// Iterate all the inputs and filter out the ones whose budget cannot
// cover the min fee.
for _, pi := range inputs {
op := pi.OutPoint()
// Get the size and skip if there's an error.
size, _, err := pi.WitnessType().SizeUpperBound()
if err != nil {
log.Warnf("Skipped input=%v: cannot get its size: %v",
op, err)
continue
}
// Skip inputs that has too little budget.
minFee := minFeeRate.FeeForWeight(int64(size))
if pi.params.Budget < minFee {
log.Warnf("Skipped input=%v: has budget=%v, but the "+
"min fee requires %v", op, pi.params.Budget,
minFee)
continue
}
// If the input comes with a required tx out that is below
// dust, we won't add it.
//
// NOTE: only HtlcSecondLevelAnchorInput returns non-nil
// RequiredTxOut.
reqOut := pi.RequiredTxOut()
if reqOut != nil {
if isDustOutput(reqOut) {
log.Errorf("Rejected input=%v due to dust "+
"required output=%v", op, reqOut.Value)
continue
}
}
filteredInputs[*op] = pi
}
return filteredInputs
}
// sortInputs sorts the inputs based on their economical value.
//
// NOTE: besides the forced inputs, the sorting won't make any difference
// because all the inputs are added to the same set. The exception is when the
// number of inputs exceeds the maxInputs limit, it requires us to split them
// into smaller clusters. In that case, the sorting will make a difference as
// the budgets of the clusters will be different.
func (b *BudgetAggregator) sortInputs(inputs []pendingInput) []pendingInput {
// sortedInputs is the final list of inputs sorted by their economical
// value.
sortedInputs := make([]pendingInput, 0, len(inputs))
// Copy the inputs.
sortedInputs = append(sortedInputs, inputs...)
// Sort the inputs based on their budgets.
//
// NOTE: We can implement more sophisticated algorithm as the budget
// left is a function f(minFeeRate, size) = b1 - s1 * r > b2 - s2 * r,
// where b1 and b2 are budgets, s1 and s2 are sizes of the inputs.
sort.Slice(sortedInputs, func(i, j int) bool {
left := sortedInputs[i].params.Budget
right := sortedInputs[j].params.Budget
// Make sure forced inputs are always put in the front.
leftForce := sortedInputs[i].params.Force
rightForce := sortedInputs[j].params.Force
// If both are forced inputs, we return the one with the higher
// budget. If neither are forced inputs, we also return the one
// with the higher budget.
if leftForce == rightForce {
return left > right
}
// Otherwise, it's either the left or the right is forced. We
// can simply return `leftForce` here as, if it's true, the
// left is forced and should be put in the front. Otherwise,
// the right is forced and should be put in the front.
return leftForce
})
return sortedInputs
}
// isDustOutput checks if the given output is considered as dust.
func isDustOutput(output *wire.TxOut) bool {
// Fetch the dust limit for this output.
dustLimit := lnwallet.DustLimitForSize(len(output.PkScript))
// If the output is below the dust limit, we consider it dust.
return btcutil.Amount(output.Value) < dustLimit
}

View File

@ -1,14 +1,17 @@
package sweep
import (
"bytes"
"errors"
"reflect"
"sort"
"testing"
"github.com/btcsuite/btcd/btcutil"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/wire"
"github.com/davecgh/go-spew/spew"
"github.com/lightningnetwork/lnd/fn"
"github.com/lightningnetwork/lnd/input"
"github.com/lightningnetwork/lnd/lnwallet/chainfee"
"github.com/stretchr/testify/require"
@ -421,3 +424,510 @@ func TestClusterByLockTime(t *testing.T) {
})
}
}
// TestBudgetAggregatorFilterInputs checks that inputs with low budget are
// filtered out.
func TestBudgetAggregatorFilterInputs(t *testing.T) {
t.Parallel()
// Create a mock fee estimator.
estimator := &chainfee.MockEstimator{}
defer estimator.AssertExpectations(t)
// Create a mock WitnessType that always return an error when trying to
// get its size upper bound.
wtErr := &input.MockWitnessType{}
defer wtErr.AssertExpectations(t)
// Mock the `SizeUpperBound` method to return an error exactly once.
dummyErr := errors.New("dummy error")
wtErr.On("SizeUpperBound").Return(0, false, dummyErr).Once()
// Create a mock WitnessType that gives the size.
wt := &input.MockWitnessType{}
defer wt.AssertExpectations(t)
// Mock the `SizeUpperBound` method to return the size four times.
const wtSize = 100
wt.On("SizeUpperBound").Return(wtSize, true, nil).Times(4)
// Create a mock input that will be filtered out due to error.
inpErr := &input.MockInput{}
defer inpErr.AssertExpectations(t)
// Mock the `WitnessType` method to return the erroring witness type.
inpErr.On("WitnessType").Return(wtErr).Once()
// Mock the `OutPoint` method to return a unique outpoint.
opErr := wire.OutPoint{Hash: chainhash.Hash{1}}
inpErr.On("OutPoint").Return(&opErr).Once()
// Mock the estimator to return a constant fee rate.
const minFeeRate = chainfee.SatPerKWeight(1000)
estimator.On("RelayFeePerKW").Return(minFeeRate).Once()
var (
// Define three budget values, one below the min fee rate, one
// above and one equal to it.
budgetLow = minFeeRate.FeeForWeight(wtSize) - 1
budgetEqual = minFeeRate.FeeForWeight(wtSize)
budgetHigh = minFeeRate.FeeForWeight(wtSize) + 1
// Define three outpoints with different budget values.
opLow = wire.OutPoint{Hash: chainhash.Hash{2}}
opEqual = wire.OutPoint{Hash: chainhash.Hash{3}}
opHigh = wire.OutPoint{Hash: chainhash.Hash{4}}
// Define an outpoint that has a dust required output.
opDust = wire.OutPoint{Hash: chainhash.Hash{5}}
)
// Create three mock inputs.
inpLow := &input.MockInput{}
defer inpLow.AssertExpectations(t)
inpEqual := &input.MockInput{}
defer inpEqual.AssertExpectations(t)
inpHigh := &input.MockInput{}
defer inpHigh.AssertExpectations(t)
inpDust := &input.MockInput{}
defer inpDust.AssertExpectations(t)
// Mock the `WitnessType` method to return the witness type.
inpLow.On("WitnessType").Return(wt)
inpEqual.On("WitnessType").Return(wt)
inpHigh.On("WitnessType").Return(wt)
inpDust.On("WitnessType").Return(wt)
// Mock the `OutPoint` method to return the unique outpoint.
inpLow.On("OutPoint").Return(&opLow)
inpEqual.On("OutPoint").Return(&opEqual)
inpHigh.On("OutPoint").Return(&opHigh)
inpDust.On("OutPoint").Return(&opDust)
// Mock the `RequiredTxOut` to return nil.
inpEqual.On("RequiredTxOut").Return(nil)
inpHigh.On("RequiredTxOut").Return(nil)
// Mock the dust required output.
inpDust.On("RequiredTxOut").Return(&wire.TxOut{
Value: 0,
PkScript: bytes.Repeat([]byte{0}, input.P2WSHSize),
})
// Create testing pending inputs.
inputs := pendingInputs{
// The first input will be filtered out due to the error.
opErr: &pendingInput{
Input: inpErr,
},
// The second input will be filtered out due to the budget.
opLow: &pendingInput{
Input: inpLow,
params: Params{Budget: budgetLow},
},
// The third input will be included.
opEqual: &pendingInput{
Input: inpEqual,
params: Params{Budget: budgetEqual},
},
// The fourth input will be included.
opHigh: &pendingInput{
Input: inpHigh,
params: Params{Budget: budgetHigh},
},
// The fifth input will be filtered out due to the dust
// required.
opDust: &pendingInput{
Input: inpDust,
params: Params{Budget: budgetHigh},
},
}
// Init the budget aggregator with the mocked estimator and zero max
// num of inputs.
b := NewBudgetAggregator(estimator, 0)
// Call the method under test.
result := b.filterInputs(inputs)
// Validate the expected inputs are returned.
require.Len(t, result, 2)
// We expect only the inputs with budget equal or above the min fee to
// be included.
require.Contains(t, result, opEqual)
require.Contains(t, result, opHigh)
}
// TestBudgetAggregatorSortInputs checks that inputs are sorted by based on
// their budgets and force flag.
func TestBudgetAggregatorSortInputs(t *testing.T) {
t.Parallel()
var (
// Create two budgets.
budgetLow = btcutil.Amount(1000)
budgetHight = budgetLow + btcutil.Amount(1000)
)
// Create an input with the low budget but forced.
inputLowForce := pendingInput{
params: Params{
Budget: budgetLow,
Force: true,
},
}
// Create an input with the low budget.
inputLow := pendingInput{
params: Params{
Budget: budgetLow,
},
}
// Create an input with the high budget and forced.
inputHighForce := pendingInput{
params: Params{
Budget: budgetHight,
Force: true,
},
}
// Create an input with the high budget.
inputHigh := pendingInput{
params: Params{
Budget: budgetHight,
},
}
// Create a testing pending inputs.
inputs := []pendingInput{
inputLowForce,
inputLow,
inputHighForce,
inputHigh,
}
// Init the budget aggregator with zero max num of inputs.
b := NewBudgetAggregator(nil, 0)
// Call the method under test.
result := b.sortInputs(inputs)
require.Len(t, result, 4)
// The first input should be the forced input with the high budget.
require.Equal(t, inputHighForce, result[0])
// The second input should be the forced input with the low budget.
require.Equal(t, inputLowForce, result[1])
// The third input should be the input with the high budget.
require.Equal(t, inputHigh, result[2])
// The fourth input should be the input with the low budget.
require.Equal(t, inputLow, result[3])
}
// TestBudgetAggregatorCreateInputSets checks that the budget aggregator
// creates input sets when the number of inputs exceeds the max number
// configed.
func TestBudgetAggregatorCreateInputSets(t *testing.T) {
t.Parallel()
// Create mocks input that doesn't have required outputs.
mockInput1 := &input.MockInput{}
defer mockInput1.AssertExpectations(t)
mockInput2 := &input.MockInput{}
defer mockInput2.AssertExpectations(t)
mockInput3 := &input.MockInput{}
defer mockInput3.AssertExpectations(t)
mockInput4 := &input.MockInput{}
defer mockInput4.AssertExpectations(t)
// Create testing pending inputs.
pi1 := pendingInput{
Input: mockInput1,
params: Params{
DeadlineHeight: fn.Some(int32(1)),
},
}
pi2 := pendingInput{
Input: mockInput2,
params: Params{
DeadlineHeight: fn.Some(int32(1)),
},
}
pi3 := pendingInput{
Input: mockInput3,
params: Params{
DeadlineHeight: fn.Some(int32(1)),
},
}
pi4 := pendingInput{
Input: mockInput4,
params: Params{
// This input has a deadline height that is different
// from the other inputs. When grouped with other
// inputs, it will cause an error to be returned.
DeadlineHeight: fn.Some(int32(2)),
},
}
// Create a budget aggregator with max number of inputs set to 2.
b := NewBudgetAggregator(nil, 2)
// Create test cases.
testCases := []struct {
name string
inputs []pendingInput
setupMock func()
expectedNumSets int
}{
{
// When the number of inputs is below the max, a single
// input set is returned.
name: "num inputs below max",
inputs: []pendingInput{pi1},
setupMock: func() {
// Mock methods used in loggings.
mockInput1.On("WitnessType").Return(
input.CommitmentAnchor)
mockInput1.On("OutPoint").Return(
&wire.OutPoint{Hash: chainhash.Hash{1}})
},
expectedNumSets: 1,
},
{
// When the number of inputs is equal to the max, a
// single input set is returned.
name: "num inputs equal to max",
inputs: []pendingInput{pi1, pi2},
setupMock: func() {
// Mock methods used in loggings.
mockInput1.On("WitnessType").Return(
input.CommitmentAnchor)
mockInput2.On("WitnessType").Return(
input.CommitmentAnchor)
mockInput1.On("OutPoint").Return(
&wire.OutPoint{Hash: chainhash.Hash{1}})
mockInput2.On("OutPoint").Return(
&wire.OutPoint{Hash: chainhash.Hash{2}})
},
expectedNumSets: 1,
},
{
// When the number of inputs is above the max, multiple
// input sets are returned.
name: "num inputs above max",
inputs: []pendingInput{pi1, pi2, pi3},
setupMock: func() {
// Mock methods used in loggings.
mockInput1.On("WitnessType").Return(
input.CommitmentAnchor)
mockInput2.On("WitnessType").Return(
input.CommitmentAnchor)
mockInput3.On("WitnessType").Return(
input.CommitmentAnchor)
mockInput1.On("OutPoint").Return(
&wire.OutPoint{Hash: chainhash.Hash{1}})
mockInput2.On("OutPoint").Return(
&wire.OutPoint{Hash: chainhash.Hash{2}})
mockInput3.On("OutPoint").Return(
&wire.OutPoint{Hash: chainhash.Hash{3}})
},
expectedNumSets: 2,
},
{
// When the number of inputs is above the max, but an
// error is returned from creating the first set, it
// shouldn't affect the remaining inputs.
name: "num inputs above max with error",
inputs: []pendingInput{pi1, pi4, pi3},
setupMock: func() {
// Mock methods used in loggings.
mockInput1.On("WitnessType").Return(
input.CommitmentAnchor)
mockInput3.On("WitnessType").Return(
input.CommitmentAnchor)
mockInput1.On("OutPoint").Return(
&wire.OutPoint{Hash: chainhash.Hash{1}})
mockInput3.On("OutPoint").Return(
&wire.OutPoint{Hash: chainhash.Hash{3}})
mockInput4.On("OutPoint").Return(
&wire.OutPoint{Hash: chainhash.Hash{2}})
},
expectedNumSets: 1,
},
}
// Iterate over the test cases.
for _, tc := range testCases {
tc := tc
t.Run(tc.name, func(t *testing.T) {
// Setup the mocks.
tc.setupMock()
// Call the method under test.
result := b.createInputSets(tc.inputs)
// Validate the expected number of input sets are
// returned.
require.Len(t, result, tc.expectedNumSets)
})
}
}
// TestBudgetInputSetClusterInputs checks that the budget aggregator clusters
// inputs into input sets based on their deadline heights.
func TestBudgetInputSetClusterInputs(t *testing.T) {
t.Parallel()
// Create a mock fee estimator.
estimator := &chainfee.MockEstimator{}
defer estimator.AssertExpectations(t)
// Create a mock WitnessType that gives the size.
wt := &input.MockWitnessType{}
defer wt.AssertExpectations(t)
// Mock the `SizeUpperBound` method to return the size six times since
// we are using nine inputs.
const wtSize = 100
wt.On("SizeUpperBound").Return(wtSize, true, nil).Times(9)
wt.On("String").Return("mock witness type")
// Mock the estimator to return a constant fee rate.
const minFeeRate = chainfee.SatPerKWeight(1000)
estimator.On("RelayFeePerKW").Return(minFeeRate).Once()
var (
// Define two budget values, one below the min fee rate and one
// above it.
budgetLow = minFeeRate.FeeForWeight(wtSize) - 1
budgetHigh = minFeeRate.FeeForWeight(wtSize) + 1
// Create three deadline heights, which means there are three
// groups of inputs to be expected.
deadlineNone = fn.None[int32]()
deadline1 = fn.Some(int32(1))
deadline2 = fn.Some(int32(2))
)
// Create testing pending inputs.
inputs := make(pendingInputs)
// For each deadline height, create two inputs with different budgets,
// one below the min fee rate and one above it. We should see the lower
// one being filtered out.
for i, deadline := range []fn.Option[int32]{
deadlineNone, deadline1, deadline2,
} {
// Define three outpoints.
opLow := wire.OutPoint{
Hash: chainhash.Hash{byte(i)},
Index: uint32(i),
}
opHigh1 := wire.OutPoint{
Hash: chainhash.Hash{byte(i + 1000)},
Index: uint32(i + 1000),
}
opHigh2 := wire.OutPoint{
Hash: chainhash.Hash{byte(i + 2000)},
Index: uint32(i + 2000),
}
// Create mock inputs.
inpLow := &input.MockInput{}
defer inpLow.AssertExpectations(t)
inpHigh1 := &input.MockInput{}
defer inpHigh1.AssertExpectations(t)
inpHigh2 := &input.MockInput{}
defer inpHigh2.AssertExpectations(t)
// Mock the `OutPoint` method to return the unique outpoint.
//
// We expect the low budget input to call this method once in
// `filterInputs`.
inpLow.On("OutPoint").Return(&opLow).Once()
// We expect the high budget input to call this method three
// times, one in `filterInputs` and one in `createInputSet`,
// and one in `NewBudgetInputSet`.
inpHigh1.On("OutPoint").Return(&opHigh1).Times(3)
inpHigh2.On("OutPoint").Return(&opHigh2).Times(3)
// Mock the `WitnessType` method to return the witness type.
inpLow.On("WitnessType").Return(wt)
inpHigh1.On("WitnessType").Return(wt)
inpHigh2.On("WitnessType").Return(wt)
// Mock the `RequiredTxOut` to return nil.
inpHigh1.On("RequiredTxOut").Return(nil)
inpHigh2.On("RequiredTxOut").Return(nil)
// Add the low input, which should be filtered out.
inputs[opLow] = &pendingInput{
Input: inpLow,
params: Params{
Budget: budgetLow,
DeadlineHeight: deadline,
},
}
// Add the high inputs, which should be included.
inputs[opHigh1] = &pendingInput{
Input: inpHigh1,
params: Params{
Budget: budgetHigh,
DeadlineHeight: deadline,
},
}
inputs[opHigh2] = &pendingInput{
Input: inpHigh2,
params: Params{
Budget: budgetHigh,
DeadlineHeight: deadline,
},
}
}
// Create a budget aggregator with a max number of inputs set to 100.
b := NewBudgetAggregator(estimator, DefaultMaxInputsPerTx)
// Call the method under test.
result := b.ClusterInputs(inputs)
// We expect three input sets to be returned, one for each deadline.
require.Len(t, result, 3)
// Check each input set has exactly two inputs.
deadlines := make(map[fn.Option[int32]]struct{})
for _, set := range result {
// We expect two inputs in each set.
require.Len(t, set.Inputs(), 2)
// We expect each set to have the expected budget.
require.Equal(t, budgetHigh*2, set.Budget())
// Save the deadlines.
deadlines[set.DeadlineHeight()] = struct{}{}
}
// We expect to see all three deadlines.
require.Contains(t, deadlines, deadlineNone)
require.Contains(t, deadlines, deadline1)
require.Contains(t, deadlines, deadline2)
}