mirror of
https://github.com/believethehype/nostrdvm.git
synced 2025-08-03 11:53:35 +02:00
Merge pull request #17 from believethehype/svd
add local stable video diffusion
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
hcai-nova-utils>=1.5.5
|
||||
hcai-nova-utils>=1.5.7
|
||||
--extra-index-url https://download.pytorch.org/whl/cu118
|
||||
torch==2.1.1
|
||||
clip_interrogator
|
||||
|
@@ -1,5 +1,5 @@
|
||||
realesrgan @git+https://github.com/xinntao/Real-ESRGAN.git
|
||||
hcai-nova-utils>=1.5.5
|
||||
hcai-nova-utils>=1.5.7
|
||||
--extra-index-url https://download.pytorch.org/whl/cu118
|
||||
torch==2.1.0
|
||||
torchvision
|
||||
|
@@ -1,4 +1,4 @@
|
||||
hcai-nova-utils>=1.5.5
|
||||
hcai-nova-utils>=1.5.7
|
||||
--extra-index-url https://download.pytorch.org/whl/cu118
|
||||
torch==2.1.0
|
||||
compel~=2.0.2
|
||||
|
@@ -0,0 +1,7 @@
|
||||
hcai-nova-utils>=1.5.7
|
||||
--extra-index-url https://download.pytorch.org/whl/cu118
|
||||
torch==2.1.0
|
||||
git+https://github.com/huggingface/diffusers.git
|
||||
transformers
|
||||
accelerate
|
||||
opencv-python
|
@@ -0,0 +1,100 @@
|
||||
import gc
|
||||
import sys
|
||||
import os
|
||||
|
||||
sys.path.insert(0, os.path.dirname(__file__))
|
||||
|
||||
from ssl import Options
|
||||
from nova_utils.interfaces.server_module import Processor
|
||||
import torch
|
||||
from diffusers import StableVideoDiffusionPipeline
|
||||
from diffusers.utils import load_image, export_to_video
|
||||
from nova_utils.utils.cache_utils import get_file
|
||||
import numpy as np
|
||||
from PIL import Image as PILImage
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# Setting defaults
|
||||
_default_options = {"model": "stabilityai/stable-video-diffusion-img2vid-xt", "fps":"7", "seed":""}
|
||||
|
||||
# TODO: add log infos,
|
||||
class StableVideoDiffusion(Processor):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.options = _default_options | self.options
|
||||
self.device = None
|
||||
self.ds_iter = None
|
||||
self.current_session = None
|
||||
|
||||
|
||||
# IO shortcuts
|
||||
self.input = [x for x in self.model_io if x.io_type == "input"]
|
||||
self.output = [x for x in self.model_io if x.io_type == "output"]
|
||||
self.input = self.input[0]
|
||||
self.output = self.output[0]
|
||||
def process_data(self, ds_iter) -> dict:
|
||||
|
||||
|
||||
|
||||
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
self.ds_iter = ds_iter
|
||||
current_session_name = self.ds_iter.session_names[0]
|
||||
self.current_session = self.ds_iter.sessions[current_session_name]['manager']
|
||||
input_image = self.current_session.input_data['input_image'].data
|
||||
|
||||
|
||||
try:
|
||||
pipe = StableVideoDiffusionPipeline.from_pretrained(
|
||||
self.options["model"], torch_dtype=torch.float16, variant="fp16"
|
||||
)
|
||||
pipe.enable_model_cpu_offload()
|
||||
|
||||
# Load the conditioning image
|
||||
image = PILImage.fromarray(input_image)
|
||||
image = image.resize((1024, 576))
|
||||
|
||||
if self.options["seed"] != "" and self.options["seed"] != " ":
|
||||
generator = torch.manual_seed(int(self.options["seed"]))
|
||||
frames = pipe(image, decode_chunk_size=8, generator=generator).frames[0]
|
||||
else:
|
||||
frames = pipe(image, decode_chunk_size=8).frames[0]
|
||||
|
||||
if torch.cuda.is_available():
|
||||
del pipe
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.ipc_collect()
|
||||
|
||||
|
||||
np_video = np.stack([np.asarray(x) for x in frames])
|
||||
return np_video
|
||||
|
||||
|
||||
except Exception as e:
|
||||
print(e)
|
||||
sys.stdout.flush()
|
||||
return "Error"
|
||||
|
||||
def calculate_aspect(self, width: int, height: int):
|
||||
def gcd(a, b):
|
||||
"""The GCD (greatest common divisor) is the highest number that evenly divides both width and height."""
|
||||
return a if b == 0 else gcd(b, a % b)
|
||||
|
||||
r = gcd(width, height)
|
||||
x = int(width / r)
|
||||
y = int(height / r)
|
||||
|
||||
return x, y
|
||||
|
||||
|
||||
|
||||
def to_output(self, data: list):
|
||||
video = self.current_session.output_data_templates['output_video']
|
||||
video.data = data
|
||||
video.meta_data.sample_rate = int(self.options['fps'])
|
||||
video.meta_data.media_type = 'video'
|
||||
|
||||
return self.current_session.output_data_templates
|
@@ -0,0 +1,9 @@
|
||||
<?xml version="1.0" ?>
|
||||
<trainer ssi-v="5">
|
||||
<info trained="true" seed="1234"/>
|
||||
<meta backend="nova-server" category="VideoGeneration" description="Generates Video from Image/prompt" is_iterable="False">
|
||||
<io type="input" id="input_image" data="Image" default_value=""/>
|
||||
<io type="output" id="output_video" data="stream:Video" default_value="sd_generated.mp4"/>
|
||||
</meta>
|
||||
<model create="StableVideoDiffusion" script="stablevideodiffusion.py" optstr="{model:LIST:stabilityai/stable-video-diffusion-img2vid-xt,stabilityai/stable-video-diffusion-img2vid};{fps:STRING:7};{seed:STRING: }"/>
|
||||
</trainer>
|
@@ -0,0 +1,12 @@
|
||||
""" Stable Video Diffusion
|
||||
"""
|
||||
# We follow Semantic Versioning (https://semver.org/)
|
||||
_MAJOR_VERSION = '1'
|
||||
_MINOR_VERSION = '0'
|
||||
_PATCH_VERSION = '0'
|
||||
|
||||
__version__ = '.'.join([
|
||||
_MAJOR_VERSION,
|
||||
_MINOR_VERSION,
|
||||
_PATCH_VERSION,
|
||||
])
|
@@ -1,4 +1,4 @@
|
||||
hcai-nova-utils>=1.5.5
|
||||
hcai-nova-utils>=1.5.7
|
||||
--extra-index-url https://download.pytorch.org/whl/cu118
|
||||
torch==2.1.0+cu118
|
||||
torchvision>= 0.15.1+cu118
|
||||
|
@@ -6,6 +6,7 @@ import zipfile
|
||||
import pandas as pd
|
||||
import requests
|
||||
import PIL.Image as Image
|
||||
from moviepy.video.io.VideoFileClip import VideoFileClip
|
||||
|
||||
from nostr_dvm.utils.output_utils import upload_media_to_hoster
|
||||
|
||||
@@ -87,6 +88,17 @@ def check_server_status(jobID, address) -> str | pd.DataFrame:
|
||||
result = upload_media_to_hoster("./outputs/image.jpg")
|
||||
os.remove("./outputs/image.jpg")
|
||||
return result
|
||||
elif content_type == 'video/mp4':
|
||||
with open('./outputs/video.mp4', 'wb') as f:
|
||||
f.write(response.content)
|
||||
f.close()
|
||||
clip = VideoFileClip("./outputs/video.mp4")
|
||||
clip.write_videofile("./outputs/video2.mp4")
|
||||
result = upload_media_to_hoster("./outputs/video2.mp4")
|
||||
clip.close()
|
||||
os.remove("./outputs/video.mp4")
|
||||
os.remove("./outputs/video2.mp4")
|
||||
return result
|
||||
elif content_type == 'text/plain; charset=utf-8':
|
||||
return response.content.decode('utf-8')
|
||||
elif content_type == "application/x-zip-compressed":
|
||||
|
@@ -25,6 +25,7 @@ Current List of Tasks:
|
||||
| ImageUpscale | 5100 | Upscales an Image | nserver |
|
||||
| MediaConverter | 5200 | Converts a link of a media file and uploads it | openAI |
|
||||
| VideoGenerationReplicateSVD | 5202 (inoff) | Generates a Video from an Image | replicate |
|
||||
| VideoGenerationSVD | 5202 (inoff) | Generates a Video from an Image | nserver |
|
||||
| TextToSpeech | 5250 | Generate Audio from a prompt | local |
|
||||
| TrendingNotesNostrBand | 5300 | Show trending notes on nostr.band | nostr.band api |
|
||||
| DiscoverInactiveFollows | 5301 | Find inactive Nostr users | local |
|
||||
|
123
nostr_dvm/tasks/videogeneration_svd.py
Normal file
123
nostr_dvm/tasks/videogeneration_svd.py
Normal file
@@ -0,0 +1,123 @@
|
||||
import json
|
||||
from multiprocessing.pool import ThreadPool
|
||||
|
||||
from nostr_dvm.backends.nova_server.utils import check_server_status, send_request_to_server
|
||||
from nostr_dvm.interfaces.dvmtaskinterface import DVMTaskInterface, process_venv
|
||||
from nostr_dvm.utils.admin_utils import AdminConfig
|
||||
from nostr_dvm.utils.dvmconfig import DVMConfig, build_default_config
|
||||
from nostr_dvm.utils.nip89_utils import NIP89Config, check_and_set_d_tag
|
||||
from nostr_dvm.utils.definitions import EventDefinitions
|
||||
|
||||
"""
|
||||
This File contains a module to transform an Image to a short Video Clip on n-server and receive results back.
|
||||
|
||||
Accepted Inputs: An url to an Image
|
||||
Outputs: An url to a video
|
||||
,
|
||||
"""
|
||||
|
||||
|
||||
class VideoGenerationSVD(DVMTaskInterface):
|
||||
KIND: int = EventDefinitions.KIND_NIP90_GENERATE_VIDEO
|
||||
TASK: str = "image-to-video"
|
||||
FIX_COST: float = 120
|
||||
|
||||
def __init__(self, name, dvm_config: DVMConfig, nip89config: NIP89Config,
|
||||
admin_config: AdminConfig = None, options=None):
|
||||
super().__init__(name, dvm_config, nip89config, admin_config, options)
|
||||
|
||||
def is_input_supported(self, tags, client=None, dvm_config=None):
|
||||
for tag in tags:
|
||||
if tag.as_vec()[0] == 'i':
|
||||
input_value = tag.as_vec()[1]
|
||||
input_type = tag.as_vec()[2]
|
||||
if input_type != "url":
|
||||
return False
|
||||
return True
|
||||
|
||||
def create_request_from_nostr_event(self, event, client=None, dvm_config=None):
|
||||
request_form = {"jobID": event.id().to_hex() + "_" + self.NAME.replace(" ", "")}
|
||||
request_form["trainerFilePath"] = r'modules\stablevideodiffusion\stablevideodiffusion.trainer'
|
||||
|
||||
url = ""
|
||||
frames = 7 # 25
|
||||
model = "stabilityai/stable-video-diffusion-img2vid-xt" #,stabilityai/stable-video-diffusion-img2vid
|
||||
|
||||
|
||||
for tag in event.tags():
|
||||
if tag.as_vec()[0] == 'i':
|
||||
input_type = tag.as_vec()[2]
|
||||
if input_type == "url":
|
||||
url = str(tag.as_vec()[1]).split('#')[0]
|
||||
# TODO add params as defined above
|
||||
|
||||
io_input = {
|
||||
"id": "input_image",
|
||||
"type": "input",
|
||||
"src": "url:Image",
|
||||
"uri": url
|
||||
}
|
||||
|
||||
io_output = {
|
||||
"id": "output_video",
|
||||
"type": "output",
|
||||
"src": "request:stream:Video"
|
||||
}
|
||||
|
||||
request_form['data'] = json.dumps([io_input, io_output])
|
||||
|
||||
options = {
|
||||
"model": model,
|
||||
"fps": frames
|
||||
|
||||
}
|
||||
request_form['options'] = json.dumps(options)
|
||||
|
||||
return request_form
|
||||
|
||||
def process(self, request_form):
|
||||
try:
|
||||
# Call the process route of n-server with our request form.
|
||||
response = send_request_to_server(request_form, self.options['server'])
|
||||
if bool(json.loads(response)['success']):
|
||||
print("Job " + request_form['jobID'] + " sent to server")
|
||||
|
||||
pool = ThreadPool(processes=1)
|
||||
thread = pool.apply_async(check_server_status, (request_form['jobID'], self.options['server']))
|
||||
print("Wait for results of server...")
|
||||
result = thread.get()
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
raise Exception(e)
|
||||
|
||||
|
||||
# We build an example here that we can call by either calling this file directly from the main directory,
|
||||
# or by adding it to our playground. You can call the example and adjust it to your needs or redefine it in the
|
||||
# playground or elsewhere
|
||||
def build_example(name, identifier, admin_config, server_address):
|
||||
dvm_config = build_default_config(identifier)
|
||||
dvm_config.USE_OWN_VENV = False
|
||||
admin_config.LUD16 = dvm_config.LN_ADDRESS
|
||||
# A module might have options it can be initialized with, here we set a default model, and the server
|
||||
# address it should use. These parameters can be freely defined in the task component
|
||||
options = {'server': server_address}
|
||||
|
||||
nip89info = {
|
||||
"name": name,
|
||||
"image": "https://image.nostr.build/c33ca6fc4cc038ca4adb46fdfdfda34951656f87ee364ef59095bae1495ce669.jpg",
|
||||
"about": "I create a short video based on an image",
|
||||
"encryptionSupported": True,
|
||||
"cashuAccepted": True,
|
||||
"nip90Params": {}
|
||||
}
|
||||
nip89config = NIP89Config()
|
||||
nip89config.DTAG = check_and_set_d_tag(identifier, name, dvm_config.PRIVATE_KEY, nip89info["image"])
|
||||
nip89config.CONTENT = json.dumps(nip89info)
|
||||
|
||||
return VideoGenerationSVD(name=name, dvm_config=dvm_config, nip89config=nip89config,
|
||||
admin_config=admin_config, options=options)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
process_venv(VideoGenerationSVD)
|
Reference in New Issue
Block a user