mirror of
https://github.com/believethehype/nostrdvm.git
synced 2025-05-30 17:59:13 +02:00
move nserver to branch for now
This commit is contained in:
parent
a9e869d3bb
commit
d2d7027e80
@ -1,10 +0,0 @@
|
||||
# NostrAI Data Vending Machine Backends
|
||||
|
||||
Each DVM task might either run locally or use a specific backend.
|
||||
Especially for GPU tasks it might make sense to outsource some tasks on other machines.
|
||||
Backends can also be API calls to (paid) services. This directory contains basic calling functions to such backends.
|
||||
Modules in the folder "tasks" might use these functions to call a specific backend.
|
||||
|
||||
Using backends might require some extra work like running/hosting a server or acquiring an API key.
|
||||
|
||||
|
@ -1,122 +0,0 @@
|
||||
import io
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import time
|
||||
import zipfile
|
||||
from pathlib import Path
|
||||
|
||||
import pandas as pd
|
||||
import requests
|
||||
import PIL.Image as Image
|
||||
|
||||
from utils.output_utils import upload_media_to_hoster
|
||||
|
||||
"""
|
||||
This file contains basic calling functions for ML tasks that are outsourced to nova-server
|
||||
(https://pypi.org/project/hcai-nova-server/). nova-server is an Open-Source backend that enables running models locally
|
||||
based on preefined modules (nova-server-modules), by accepting a request form.
|
||||
Modules are deployed in in separate virtual environments so dependencies won't conflict.
|
||||
|
||||
Setup nova-server:
|
||||
https://hcmlab.github.io/nova-server/docbuild/html/tutorials/introduction.html
|
||||
|
||||
"""
|
||||
|
||||
"""
|
||||
send_request_to_nova_server(request_form, address)
|
||||
Function to send a request_form to the server, containing all the information we parsed from the Nostr event and added
|
||||
in the module that is calling the server
|
||||
|
||||
"""
|
||||
|
||||
|
||||
def send_request_to_nova_server(request_form, address):
|
||||
print("Sending job to NOVA-Server")
|
||||
url = ('http://' + address + '/process')
|
||||
headers = {'Content-type': 'application/x-www-form-urlencoded'}
|
||||
response = requests.post(url, headers=headers, data=request_form)
|
||||
return response.text
|
||||
|
||||
|
||||
def send_file_to_nova_server(filepath, address):
|
||||
print("Sending file to NOVA-Server")
|
||||
url = ('http://' + address + '/upload')
|
||||
try:
|
||||
fp = open(filepath, 'rb')
|
||||
response = requests.post(url, files={'file': fp})
|
||||
result = response.content.decode('utf-8')
|
||||
except Exception as e:
|
||||
print(e)
|
||||
print(response.content.decode('utf-8'))
|
||||
|
||||
return result
|
||||
|
||||
# headers = {'Content-type': 'application/x-www-form-urlencoded'}
|
||||
|
||||
|
||||
"""
|
||||
check_nova_server_status(request_form, address)
|
||||
Function that requests the status of the current process with the jobID (we use the Nostr event as jobID).
|
||||
When the Job is successfully finished we grab the result and depending on the type return the output
|
||||
We throw an exception on error
|
||||
"""
|
||||
|
||||
|
||||
def check_nova_server_status(jobID, address) -> str | pd.DataFrame:
|
||||
headers = {'Content-type': 'application/x-www-form-urlencoded'}
|
||||
url_status = 'http://' + address + '/job_status'
|
||||
url_log = 'http://' + address + '/log'
|
||||
|
||||
print("Sending Status Request to NOVA-Server")
|
||||
data = {"jobID": jobID}
|
||||
|
||||
status = 0
|
||||
length = 0
|
||||
while status != 2 and status != 3:
|
||||
response_status = requests.post(url_status, headers=headers, data=data)
|
||||
response_log = requests.post(url_log, headers=headers, data=data)
|
||||
status = int(json.loads(response_status.text)['status'])
|
||||
log_content = str(json.loads(response_log.text)['message']).replace("ERROR", "").replace("INFO", "")
|
||||
log = log_content[length:]
|
||||
length = len(log_content)
|
||||
if log != "":
|
||||
print(log)
|
||||
# WAITING = 0, RUNNING = 1, FINISHED = 2, ERROR = 3
|
||||
time.sleep(1.0)
|
||||
|
||||
if status == 2:
|
||||
try:
|
||||
url_fetch = 'http://' + address + '/fetch_result'
|
||||
print("Fetching Results from NOVA-Server...")
|
||||
data = {"jobID": jobID, "delete_after_download": True}
|
||||
response = requests.post(url_fetch, headers=headers, data=data)
|
||||
content_type = response.headers['content-type']
|
||||
print("Content-type: " + str(content_type))
|
||||
if content_type == "image/jpeg":
|
||||
image = Image.open(io.BytesIO(response.content))
|
||||
image.save("./outputs/image.jpg")
|
||||
result = upload_media_to_hoster("./outputs/image.jpg")
|
||||
os.remove("./outputs/image.jpg")
|
||||
return result
|
||||
|
||||
elif content_type == 'text/plain; charset=utf-8':
|
||||
return response.content.decode('utf-8')
|
||||
elif content_type == "application/x-zip-compressed":
|
||||
zf = zipfile.ZipFile(io.BytesIO(response.content), "r")
|
||||
|
||||
for fileinfo in zf.infolist():
|
||||
if fileinfo.filename.endswith(".annotation~"):
|
||||
try:
|
||||
anno_string = zf.read(fileinfo).decode('utf-8', errors='replace')
|
||||
columns = ['from', 'to', 'name', 'conf']
|
||||
result = pd.DataFrame([row.split(';') for row in anno_string.split('\n')],
|
||||
columns=columns)
|
||||
return result
|
||||
except Exception as e:
|
||||
print(e)
|
||||
except Exception as e:
|
||||
print("Couldn't fetch result: " + str(e))
|
||||
|
||||
elif status == 3:
|
||||
return "error"
|
77
main.py
77
main.py
@ -11,11 +11,8 @@ from interfaces.dvmtaskinterface import DVMTaskInterface
|
||||
import tasks.convert_media as convert_media
|
||||
import tasks.discovery_inactive_follows as discovery_inactive_follows
|
||||
import tasks.imagegeneration_openai_dalle as imagegeneration_openai_dalle
|
||||
import tasks.imagegeneration_sdxl as imagegeneration_sdxl
|
||||
import tasks.imagegeneration_sdxlimg2img as imagegeneration_sdxlimg2img
|
||||
import tasks.textextraction_pdf as textextraction_pdf
|
||||
import tasks.textextraction_google as textextraction_google
|
||||
import tasks.textextraction_whisperx as textextraction_whisperx
|
||||
import tasks.translation_google as translation_google
|
||||
import tasks.translation_libretranslate as translation_libretranslate
|
||||
|
||||
@ -70,80 +67,6 @@ def playground():
|
||||
bot_config.SUPPORTED_DVMS.append(libre_translator) # We add translator to the bot
|
||||
libre_translator.run()
|
||||
|
||||
# Spawn DVM3 Kind 5100 Image Generation This one uses a specific backend called nova-server.
|
||||
# If you want to use it, see the instructions in backends/nova_server
|
||||
if os.getenv("NOVA_SERVER") is not None and os.getenv("NOVA_SERVER") != "":
|
||||
stable_artist = imagegeneration_sdxl.build_example("Stable Diffusion XL", "stable_diffusion",
|
||||
admin_config, os.getenv("NOVA_SERVER"),
|
||||
"stabilityai/stable-diffusion-xl",
|
||||
"")
|
||||
bot_config.SUPPORTED_DVMS.append(stable_artist) # We add unstable Diffusion to the bot
|
||||
stable_artist.run()
|
||||
|
||||
# Spawn DVM4, another Instance of text-to-image, as before but use a different privatekey, model and lora this time.
|
||||
if os.getenv("NOVA_SERVER") is not None and os.getenv("NOVA_SERVER") != "":
|
||||
# Let's not use one of the examples in this one, but generate our own variation of the dvm. We make a new DVM
|
||||
# called "Sketcher", with a predefined model and lora, so it will always make sketches of prompts
|
||||
def build_sketcher(name, identifier, admin_config):
|
||||
dvm_config = DVMConfig()
|
||||
dvm_config.PRIVATE_KEY = check_and_set_private_key(identifier)
|
||||
dvm_config.LNBITS_INVOICE_KEY = os.getenv("LNBITS_INVOICE_KEY")
|
||||
dvm_config.LNBITS_URL = os.getenv("LNBITS_HOST")
|
||||
|
||||
nip90params = {
|
||||
"negative_prompt": {
|
||||
"required": False,
|
||||
"values": []
|
||||
},
|
||||
"ratio": {
|
||||
"required": False,
|
||||
"values": ["1:1", "4:3", "16:9", "3:4", "9:16", "10:16"]
|
||||
}
|
||||
}
|
||||
nip89info = {
|
||||
"name": name,
|
||||
"image": "https://image.nostr.build/229c14e440895da30de77b3ca145d66d4b04efb4027ba3c44ca147eecde891f1.jpg",
|
||||
"about": "I draw images based on a prompt in the style of paper sketches",
|
||||
"encryptionSupported": True,
|
||||
"cashuAccepted": True,
|
||||
"nip90Params": nip90params
|
||||
}
|
||||
|
||||
# A module might have options it can be initialized with, here we set a default model, lora and the nova-server
|
||||
# address it should use. These parameters can be freely defined in the task component
|
||||
options = {'default_model': "mohawk", 'default_lora': "timburton", 'nova_server': os.getenv("NOVA_SERVER")}
|
||||
|
||||
nip89config = NIP89Config()
|
||||
nip89config.DTAG = nip89config.DTAG = check_and_set_d_tag(identifier, name, dvm_config.PRIVATE_KEY,
|
||||
nip89info["image"])
|
||||
nip89config.CONTENT = json.dumps(nip89info)
|
||||
# We add an optional AdminConfig for this one, and tell the dvm to rebroadcast its NIP89
|
||||
return imagegeneration_sdxl.ImageGenerationSDXL(name=name, dvm_config=dvm_config, nip89config=nip89config,
|
||||
admin_config=admin_config, options=options)
|
||||
|
||||
sketcher = build_sketcher("Sketcher", "sketcher", admin_config)
|
||||
bot_config.SUPPORTED_DVMS.append(sketcher) # We also add Sketcher to the bot
|
||||
sketcher.run()
|
||||
|
||||
# Spawn DVM5, image-to-image, .
|
||||
if os.getenv("NOVA_SERVER") is not None and os.getenv("NOVA_SERVER") != "":
|
||||
imageconverter = imagegeneration_sdxlimg2img.build_example("Image Converter Inkpunk",
|
||||
"image_converter_inkpunk", admin_config,
|
||||
os.getenv("NOVA_SERVER"),
|
||||
"inkpunk", 0.6)
|
||||
bot_config.SUPPORTED_DVMS.append(imageconverter) # We also add Sketcher to the bot
|
||||
imageconverter.run()
|
||||
|
||||
# Spawn DVM5, Another script on nova-server calling WhisperX to transcribe media files
|
||||
|
||||
if os.getenv("NOVA_SERVER") is not None and os.getenv("NOVA_SERVER") != "":
|
||||
whisperer = textextraction_whisperx.build_example("Whisperer", "whisperx", admin_config, os.getenv("NOVA_SERVER"))
|
||||
bot_config.SUPPORTED_DVMS.append(whisperer) # We also add Sketcher to the bot
|
||||
whisperer.run()
|
||||
|
||||
transcriptor = textextraction_google.build_example("Transcriptor", "speech_recognition", admin_config)
|
||||
bot_config.SUPPORTED_DVMS.append(transcriptor) # We also add Sketcher to the bot
|
||||
transcriptor.run()
|
||||
|
||||
# Spawn DVM6, this one requires an OPENAI API Key and balance with OpenAI, you will move the task to them and pay
|
||||
# per call. Make sure you have enough balance and the DVM's cost is set higher than what you pay yourself, except, you know,
|
||||
|
@ -9,11 +9,9 @@ Current List of Tasks:
|
||||
| Module | Kind | Description | Backend |
|
||||
|-------------------------|------|------------------------------------------------|-------------|
|
||||
| TextExtractionPDF | 5000 | Extracts Text from a PDF file | local |
|
||||
| SpeechToTextWhisperX | 5000 | Extracts Speech from Media files | nova-server |
|
||||
| SpeechToTextGoogle | 5000 | Extracts Speech from Media files via Google | googleAPI |
|
||||
| TranslationGoogle | 5002 | Translates Inputs to another language | googleAPI |
|
||||
| TranslationLibre | 5002 | Translates Inputs to another language | libreAPI |
|
||||
| ImageGenerationSDXL | 5100 | Generates an Image with StableDiffusionXL | nova-server |
|
||||
| ImageGenerationDALLE | 5100 | Generates an Image with Dall-E | openAI |
|
||||
| MediaConverter | 5200 | Converts a link of a media file and uploads it | openAI |
|
||||
| DiscoverInactiveFollows | 5301 | Find inactive Nostr users | local |
|
@ -1,220 +0,0 @@
|
||||
import json
|
||||
import os
|
||||
from multiprocessing.pool import ThreadPool
|
||||
from pathlib import Path
|
||||
|
||||
import dotenv
|
||||
|
||||
from backends.nova_server import check_nova_server_status, send_request_to_nova_server
|
||||
from interfaces.dvmtaskinterface import DVMTaskInterface
|
||||
from utils.admin_utils import AdminConfig
|
||||
from utils.backend_utils import keep_alive
|
||||
from utils.dvmconfig import DVMConfig
|
||||
from utils.nip89_utils import NIP89Config, check_and_set_d_tag
|
||||
from utils.definitions import EventDefinitions
|
||||
from utils.nostr_utils import check_and_set_private_key
|
||||
|
||||
"""
|
||||
This File contains a Module to transform Text input on NOVA-Server and receive results back.
|
||||
|
||||
Accepted Inputs: Prompt (text)
|
||||
Outputs: An url to an Image
|
||||
Params: -model # models: juggernaut, dynavision, colossusProject, newreality, unstable
|
||||
-lora # loras (weights on top of models) voxel,
|
||||
"""
|
||||
|
||||
|
||||
class ImageGenerationSDXL(DVMTaskInterface):
|
||||
KIND: int = EventDefinitions.KIND_NIP90_GENERATE_IMAGE
|
||||
TASK: str = "text-to-image"
|
||||
FIX_COST: float = 50
|
||||
|
||||
def __init__(self, name, dvm_config: DVMConfig, nip89config: NIP89Config,
|
||||
admin_config: AdminConfig = None, options=None):
|
||||
super().__init__(name, dvm_config, nip89config, admin_config, options)
|
||||
|
||||
def is_input_supported(self, tags):
|
||||
for tag in tags:
|
||||
if tag.as_vec()[0] == 'i':
|
||||
input_value = tag.as_vec()[1]
|
||||
input_type = tag.as_vec()[2]
|
||||
if input_type != "text":
|
||||
return False
|
||||
|
||||
elif tag.as_vec()[0] == 'output':
|
||||
output = tag.as_vec()[1]
|
||||
if (output == "" or
|
||||
not (output == "image/png" or "image/jpg"
|
||||
or output == "image/png;format=url" or output == "image/jpg;format=url")):
|
||||
print("Output format not supported, skipping..")
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def create_request_from_nostr_event(self, event, client=None, dvm_config=None):
|
||||
request_form = {"jobID": event.id().to_hex() + "_" + self.NAME.replace(" ", "")}
|
||||
request_form["trainerFilePath"] = 'modules\\stablediffusionxl\\stablediffusionxl.trainer'
|
||||
|
||||
prompt = ""
|
||||
negative_prompt = ""
|
||||
if self.options.get("default_model") and self.options.get("default_model") != "":
|
||||
model = self.options['default_model']
|
||||
else:
|
||||
model = "stabilityai/stable-diffusion-xl-base-1.0"
|
||||
|
||||
ratio_width = "1"
|
||||
ratio_height = "1"
|
||||
width = ""
|
||||
height = ""
|
||||
if self.options.get("default_lora") and self.options.get("default_lora") != "":
|
||||
lora = self.options['default_lora']
|
||||
else:
|
||||
lora = ""
|
||||
lora_weight = ""
|
||||
strength = ""
|
||||
guidance_scale = ""
|
||||
for tag in event.tags():
|
||||
if tag.as_vec()[0] == 'i':
|
||||
input_type = tag.as_vec()[2]
|
||||
if input_type == "text":
|
||||
prompt = tag.as_vec()[1]
|
||||
|
||||
elif tag.as_vec()[0] == 'param':
|
||||
print("Param: " + tag.as_vec()[1] + ": " + tag.as_vec()[2])
|
||||
if tag.as_vec()[1] == "negative_prompt":
|
||||
negative_prompt = tag.as_vec()[2]
|
||||
elif tag.as_vec()[1] == "lora":
|
||||
lora = tag.as_vec()[2]
|
||||
elif tag.as_vec()[1] == "lora_weight":
|
||||
lora_weight = tag.as_vec()[2]
|
||||
elif tag.as_vec()[1] == "strength":
|
||||
strength = float(tag.as_vec()[2])
|
||||
elif tag.as_vec()[1] == "guidance_scale":
|
||||
guidance_scale = float(tag.as_vec()[2])
|
||||
elif tag.as_vec()[1] == "ratio":
|
||||
if len(tag.as_vec()) > 3:
|
||||
ratio_width = (tag.as_vec()[2])
|
||||
ratio_height = (tag.as_vec()[3])
|
||||
elif len(tag.as_vec()) == 3:
|
||||
split = tag.as_vec()[2].split(":")
|
||||
ratio_width = split[0]
|
||||
ratio_height = split[1]
|
||||
# if size is set it will overwrite ratio.
|
||||
elif tag.as_vec()[1] == "size":
|
||||
if len(tag.as_vec()) > 3:
|
||||
width = (tag.as_vec()[2])
|
||||
height = (tag.as_vec()[3])
|
||||
elif len(tag.as_vec()) == 3:
|
||||
split = tag.as_vec()[2].split("x")
|
||||
if len(split) > 1:
|
||||
width = split[0]
|
||||
height = split[1]
|
||||
elif tag.as_vec()[1] == "model":
|
||||
model = tag.as_vec()[2]
|
||||
|
||||
io_input = {
|
||||
"id": "input_prompt",
|
||||
"type": "input",
|
||||
"src": "request:text",
|
||||
"data": prompt
|
||||
}
|
||||
io_negative = {
|
||||
"id": "negative_prompt",
|
||||
"type": "input",
|
||||
"src": "request:text",
|
||||
"data": negative_prompt
|
||||
}
|
||||
io_output = {
|
||||
"id": "output_image",
|
||||
"type": "output",
|
||||
"src": "request:image"
|
||||
}
|
||||
|
||||
request_form['data'] = json.dumps([io_input, io_negative, io_output])
|
||||
|
||||
options = {
|
||||
"model": model,
|
||||
"ratio": ratio_width + '-' + ratio_height,
|
||||
"width": width,
|
||||
"height": height,
|
||||
"strength": strength,
|
||||
"guidance_scale": guidance_scale,
|
||||
"lora": lora,
|
||||
"lora_weight": lora_weight
|
||||
}
|
||||
request_form['options'] = json.dumps(options)
|
||||
|
||||
return request_form
|
||||
|
||||
def process(self, request_form):
|
||||
try:
|
||||
# Call the process route of NOVA-Server with our request form.
|
||||
response = send_request_to_nova_server(request_form, self.options['nova_server'])
|
||||
if bool(json.loads(response)['success']):
|
||||
print("Job " + request_form['jobID'] + " sent to NOVA-server")
|
||||
|
||||
pool = ThreadPool(processes=1)
|
||||
thread = pool.apply_async(check_nova_server_status, (request_form['jobID'], self.options['nova_server']))
|
||||
print("Wait for results of NOVA-Server...")
|
||||
result = thread.get()
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
raise Exception(e)
|
||||
|
||||
# We build an example here that we can call by either calling this file directly from the main directory,
|
||||
# or by adding it to our playground. You can call the example and adjust it to your needs or redefine it in the
|
||||
# playground or elsewhere
|
||||
def build_example(name, identifier, admin_config, server_address, default_model="stabilityai/stable-diffusion-xl"
|
||||
"-base-1.0", default_lora=""):
|
||||
dvm_config = DVMConfig()
|
||||
dvm_config.PRIVATE_KEY = check_and_set_private_key(identifier)
|
||||
dvm_config.LNBITS_INVOICE_KEY = "" # This one will not use Lnbits to create invoices, but rely on zaps
|
||||
dvm_config.LNBITS_URL = ""
|
||||
|
||||
# A module might have options it can be initialized with, here we set a default model, and the nova-server
|
||||
# address it should use. These parameters can be freely defined in the task component
|
||||
options = {'default_model': default_model, 'default_lora': default_lora, 'nova_server': server_address}
|
||||
|
||||
nip90params = {
|
||||
"negative_prompt": {
|
||||
"required": False,
|
||||
"values": []
|
||||
},
|
||||
"ratio": {
|
||||
"required": False,
|
||||
"values": ["1:1", "4:3", "16:9", "3:4", "9:16", "10:16"]
|
||||
}
|
||||
}
|
||||
nip89info = {
|
||||
"name": name,
|
||||
"image": "https://image.nostr.build/c33ca6fc4cc038ca4adb46fdfdfda34951656f87ee364ef59095bae1495ce669.jpg",
|
||||
"about": "I draw images based on a prompt with a Model called unstable diffusion",
|
||||
"encryptionSupported": True,
|
||||
"cashuAccepted": True,
|
||||
"nip90Params": nip90params
|
||||
}
|
||||
nip89config = NIP89Config()
|
||||
nip89config.DTAG = check_and_set_d_tag(identifier, name, dvm_config.PRIVATE_KEY,
|
||||
nip89info["image"])
|
||||
nip89config.CONTENT = json.dumps(nip89info)
|
||||
return ImageGenerationSDXL(name=name, dvm_config=dvm_config, nip89config=nip89config,
|
||||
admin_config=admin_config, options=options)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
env_path = Path('.env')
|
||||
if env_path.is_file():
|
||||
print(f'loading environment from {env_path.resolve()}')
|
||||
dotenv.load_dotenv(env_path, verbose=True, override=True)
|
||||
else:
|
||||
raise FileNotFoundError(f'.env file not found at {env_path} ')
|
||||
|
||||
admin_config = AdminConfig()
|
||||
admin_config.REBROADCAST_NIP89 = False
|
||||
admin_config.UPDATE_PROFILE = False
|
||||
admin_config.LUD16 = ""
|
||||
dvm = build_example("Unstable Diffusion", "unstable_diffusion", admin_config, os.getenv("NOVA_SERVER"), "stabilityai/stable-diffusion-xl", "")
|
||||
dvm.run()
|
||||
|
||||
keep_alive()
|
@ -1,255 +0,0 @@
|
||||
import json
|
||||
import os
|
||||
from multiprocessing.pool import ThreadPool
|
||||
from pathlib import Path
|
||||
|
||||
import dotenv
|
||||
|
||||
from backends.nova_server import check_nova_server_status, send_request_to_nova_server
|
||||
from interfaces.dvmtaskinterface import DVMTaskInterface
|
||||
from utils.admin_utils import AdminConfig
|
||||
from utils.backend_utils import keep_alive
|
||||
from utils.dvmconfig import DVMConfig
|
||||
from utils.nip89_utils import NIP89Config, check_and_set_d_tag
|
||||
from utils.definitions import EventDefinitions
|
||||
from utils.nostr_utils import check_and_set_private_key
|
||||
|
||||
"""
|
||||
This File contains a Module to transform Text input on NOVA-Server and receive results back.
|
||||
|
||||
Accepted Inputs: Prompt (text)
|
||||
Outputs: An url to an Image
|
||||
Params: -model # models: juggernaut, dynavision, colossusProject, newreality, unstable
|
||||
-lora # loras (weights on top of models) voxel,
|
||||
"""
|
||||
|
||||
|
||||
class ImageGenerationSDXLIMG2IMG(DVMTaskInterface):
|
||||
KIND: int = EventDefinitions.KIND_NIP90_GENERATE_IMAGE
|
||||
TASK: str = "image-to-image"
|
||||
FIX_COST: float = 50
|
||||
|
||||
def __init__(self, name, dvm_config: DVMConfig, nip89config: NIP89Config,
|
||||
admin_config: AdminConfig = None, options=None):
|
||||
super().__init__(name, dvm_config, nip89config, admin_config, options)
|
||||
|
||||
def is_input_supported(self, tags):
|
||||
hasurl = False
|
||||
hasprompt = False
|
||||
for tag in tags:
|
||||
if tag.as_vec()[0] == 'i':
|
||||
input_value = tag.as_vec()[1]
|
||||
input_type = tag.as_vec()[2]
|
||||
if input_type == "url":
|
||||
hasurl = True
|
||||
elif input_type == "text":
|
||||
hasprompt = True #Little optional when lora is set
|
||||
|
||||
elif tag.as_vec()[0] == 'output':
|
||||
output = tag.as_vec()[1]
|
||||
if (output == "" or
|
||||
not (output == "image/png" or "image/jpg"
|
||||
or output == "image/png;format=url" or output == "image/jpg;format=url")):
|
||||
print("Output format not supported, skipping..")
|
||||
return False
|
||||
|
||||
if not hasurl:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def create_request_from_nostr_event(self, event, client=None, dvm_config=None):
|
||||
request_form = {"jobID": event.id().to_hex() + "_" + self.NAME.replace(" ", "")}
|
||||
request_form["trainerFilePath"] = r'modules\stablediffusionxl\stablediffusionxl-img2img.trainer'
|
||||
|
||||
prompt = ""
|
||||
negative_prompt = ""
|
||||
url = ""
|
||||
if self.options.get("default_model"):
|
||||
model = self.options['default_model']
|
||||
else:
|
||||
model = "stabilityai/stable-diffusion-xl-refiner-1.0"
|
||||
|
||||
ratio_width = "1"
|
||||
ratio_height = "1"
|
||||
width = ""
|
||||
height = ""
|
||||
|
||||
if self.options.get("default_lora") and self.options.get("default_lora") != "":
|
||||
lora = self.options['default_lora']
|
||||
else:
|
||||
lora = ""
|
||||
|
||||
lora_weight = ""
|
||||
if self.options.get("strength"):
|
||||
strength = float(self.options['strength'])
|
||||
else:
|
||||
strength = 0.8
|
||||
if self.options.get("guidance_scale"):
|
||||
guidance_scale = float(self.options['guidance_scale'])
|
||||
else:
|
||||
guidance_scale = 11.0
|
||||
for tag in event.tags():
|
||||
if tag.as_vec()[0] == 'i':
|
||||
input_type = tag.as_vec()[2]
|
||||
if input_type == "text":
|
||||
prompt = tag.as_vec()[1]
|
||||
elif input_type == "url":
|
||||
url = tag.as_vec()[1]
|
||||
|
||||
elif tag.as_vec()[0] == 'param':
|
||||
print("Param: " + tag.as_vec()[1] + ": " + tag.as_vec()[2])
|
||||
if tag.as_vec()[1] == "negative_prompt":
|
||||
negative_prompt = tag.as_vec()[2]
|
||||
elif tag.as_vec()[1] == "lora":
|
||||
lora = tag.as_vec()[2]
|
||||
elif tag.as_vec()[1] == "lora_weight":
|
||||
lora_weight = tag.as_vec()[2]
|
||||
elif tag.as_vec()[1] == "strength":
|
||||
strength = float(tag.as_vec()[2])
|
||||
elif tag.as_vec()[1] == "guidance_scale":
|
||||
guidance_scale = float(tag.as_vec()[2])
|
||||
elif tag.as_vec()[1] == "ratio":
|
||||
if len(tag.as_vec()) > 3:
|
||||
ratio_width = (tag.as_vec()[2])
|
||||
ratio_height = (tag.as_vec()[3])
|
||||
elif len(tag.as_vec()) == 3:
|
||||
split = tag.as_vec()[2].split(":")
|
||||
ratio_width = split[0]
|
||||
ratio_height = split[1]
|
||||
# if size is set it will overwrite ratio.
|
||||
elif tag.as_vec()[1] == "size":
|
||||
if len(tag.as_vec()) > 3:
|
||||
width = (tag.as_vec()[2])
|
||||
height = (tag.as_vec()[3])
|
||||
elif len(tag.as_vec()) == 3:
|
||||
split = tag.as_vec()[2].split("x")
|
||||
if len(split) > 1:
|
||||
width = split[0]
|
||||
height = split[1]
|
||||
elif tag.as_vec()[1] == "model":
|
||||
model = tag.as_vec()[2]
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
io_input_image = {
|
||||
"id": "input_image",
|
||||
"type": "input",
|
||||
"src": "url:Image",
|
||||
"uri": url
|
||||
}
|
||||
io_input = {
|
||||
"id": "input_prompt",
|
||||
"type": "input",
|
||||
"src": "request:text",
|
||||
"data": prompt
|
||||
}
|
||||
io_negative = {
|
||||
"id": "negative_prompt",
|
||||
"type": "input",
|
||||
"src": "request:text",
|
||||
"data": negative_prompt
|
||||
}
|
||||
io_output = {
|
||||
"id": "output_image",
|
||||
"type": "output",
|
||||
"src": "request:image"
|
||||
}
|
||||
|
||||
request_form['data'] = json.dumps([io_input_image, io_input, io_negative, io_output])
|
||||
|
||||
options = {
|
||||
"model": model,
|
||||
"ratio": ratio_width + '-' + ratio_height,
|
||||
"width": width,
|
||||
"height": height,
|
||||
"strength": strength,
|
||||
"guidance_scale": guidance_scale,
|
||||
"lora": lora,
|
||||
"lora_weight": lora_weight,
|
||||
"n_steps": 30
|
||||
}
|
||||
request_form['options'] = json.dumps(options)
|
||||
|
||||
return request_form
|
||||
|
||||
def process(self, request_form):
|
||||
try:
|
||||
# Call the process route of NOVA-Server with our request form.
|
||||
response = send_request_to_nova_server(request_form, self.options['nova_server'])
|
||||
if bool(json.loads(response)['success']):
|
||||
print("Job " + request_form['jobID'] + " sent to NOVA-server")
|
||||
|
||||
pool = ThreadPool(processes=1)
|
||||
thread = pool.apply_async(check_nova_server_status, (request_form['jobID'], self.options['nova_server']))
|
||||
print("Wait for results of NOVA-Server...")
|
||||
result = thread.get()
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
raise Exception(e)
|
||||
|
||||
# We build an example here that we can call by either calling this file directly from the main directory,
|
||||
# or by adding it to our playground. You can call the example and adjust it to your needs or redefine it in the
|
||||
# playground or elsewhere
|
||||
def build_example(name, identifier, admin_config, server_address, default_lora="", strength=0.6):
|
||||
dvm_config = DVMConfig()
|
||||
dvm_config.PRIVATE_KEY = check_and_set_private_key(identifier)
|
||||
dvm_config.LNBITS_INVOICE_KEY = os.getenv("LNBITS_INVOICE_KEY")
|
||||
dvm_config.LNBITS_URL = os.getenv("LNBITS_HOST")
|
||||
|
||||
nip90params = {
|
||||
"negative_prompt": {
|
||||
"required": False,
|
||||
"values": []
|
||||
},
|
||||
"lora": {
|
||||
"required": False,
|
||||
"values": ["inkpunk", "timburton", "voxel"]
|
||||
},
|
||||
|
||||
"strength": {
|
||||
"required": False,
|
||||
"values": []
|
||||
}
|
||||
}
|
||||
nip89info = {
|
||||
"name": name,
|
||||
"image": "https://image.nostr.build/229c14e440895da30de77b3ca145d66d4b04efb4027ba3c44ca147eecde891f1.jpg",
|
||||
"about": "I convert an image to another image, kinda random for now. ",
|
||||
"encryptionSupported": True,
|
||||
"cashuAccepted": True,
|
||||
"nip90Params": nip90params
|
||||
}
|
||||
|
||||
# A module might have options it can be initialized with, here we set a default model, lora and the nova-server
|
||||
options = {'default_lora': default_lora, 'strength': strength, 'nova_server': server_address}
|
||||
|
||||
nip89config = NIP89Config()
|
||||
|
||||
nip89config.DTAG = check_and_set_d_tag(identifier, name, dvm_config.PRIVATE_KEY,
|
||||
nip89info["image"])
|
||||
nip89config.CONTENT = json.dumps(nip89info)
|
||||
# We add an optional AdminConfig for this one, and tell the dvm to rebroadcast its NIP89
|
||||
return ImageGenerationSDXLIMG2IMG(name=name, dvm_config=dvm_config, nip89config=nip89config,
|
||||
admin_config=admin_config, options=options)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
env_path = Path('.env')
|
||||
if env_path.is_file():
|
||||
print(f'loading environment from {env_path.resolve()}')
|
||||
dotenv.load_dotenv(env_path, verbose=True, override=True)
|
||||
else:
|
||||
raise FileNotFoundError(f'.env file not found at {env_path} ')
|
||||
|
||||
admin_config = AdminConfig()
|
||||
admin_config.REBROADCAST_NIP89 = False
|
||||
admin_config.UPDATE_PROFILE = False
|
||||
admin_config.LUD16 = ""
|
||||
dvm = build_example("Image Converter Inkpunk", "image2image", admin_config, os.getenv("NOVA_SERVER"), "", 0.6)
|
||||
dvm.run()
|
||||
|
||||
keep_alive()
|
@ -1,164 +0,0 @@
|
||||
import json
|
||||
import os
|
||||
from multiprocessing.pool import ThreadPool
|
||||
from pathlib import Path
|
||||
|
||||
import dotenv
|
||||
|
||||
from backends.nova_server import check_nova_server_status, send_request_to_nova_server
|
||||
from interfaces.dvmtaskinterface import DVMTaskInterface
|
||||
from utils.admin_utils import AdminConfig
|
||||
from utils.backend_utils import keep_alive
|
||||
from utils.dvmconfig import DVMConfig
|
||||
from utils.nip89_utils import NIP89Config, check_and_set_d_tag
|
||||
from utils.definitions import EventDefinitions
|
||||
from utils.nostr_utils import check_and_set_private_key
|
||||
|
||||
"""
|
||||
This File contains a Module to extract a prompt from an image from an url.
|
||||
|
||||
Accepted Inputs: link to image (url)
|
||||
Outputs: An textual description of the image
|
||||
|
||||
"""
|
||||
|
||||
|
||||
class ImageInterrogator(DVMTaskInterface):
|
||||
KIND: int = EventDefinitions.KIND_NIP90_EXTRACT_TEXT
|
||||
TASK: str = "image-to-text"
|
||||
FIX_COST: float = 80
|
||||
|
||||
def __init__(self, name, dvm_config: DVMConfig, nip89config: NIP89Config,
|
||||
admin_config: AdminConfig = None, options=None):
|
||||
super().__init__(name, dvm_config, nip89config, admin_config, options)
|
||||
|
||||
def is_input_supported(self, tags):
|
||||
hasurl = False
|
||||
for tag in tags:
|
||||
if tag.as_vec()[0] == 'i':
|
||||
input_value = tag.as_vec()[1]
|
||||
input_type = tag.as_vec()[2]
|
||||
if input_type == "url":
|
||||
hasurl = True
|
||||
|
||||
if not hasurl:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def create_request_from_nostr_event(self, event, client=None, dvm_config=None):
|
||||
request_form = {"jobID": event.id().to_hex() + "_" + self.NAME.replace(" ", "")}
|
||||
request_form["trainerFilePath"] = r'modules\image_interrogator\image_interrogator.trainer'
|
||||
url = ""
|
||||
method = "prompt"
|
||||
mode = "best"
|
||||
|
||||
|
||||
for tag in event.tags():
|
||||
if tag.as_vec()[0] == 'i':
|
||||
input_type = tag.as_vec()[2]
|
||||
if input_type == "url":
|
||||
url = tag.as_vec()[1]
|
||||
elif tag.as_vec()[0] == 'param':
|
||||
print("Param: " + tag.as_vec()[1] + ": " + tag.as_vec()[2])
|
||||
if tag.as_vec()[1] == "method":
|
||||
method = tag.as_vec()[2]
|
||||
elif tag.as_vec()[1] == "mode":
|
||||
mode = tag.as_vec()[2]
|
||||
|
||||
io_input_image = {
|
||||
"id": "input_image",
|
||||
"type": "input",
|
||||
"src": "url:Image",
|
||||
"uri": url
|
||||
}
|
||||
|
||||
io_output = {
|
||||
"id": "output",
|
||||
"type": "output",
|
||||
"src": "request:text"
|
||||
}
|
||||
|
||||
request_form['data'] = json.dumps([io_input_image, io_output])
|
||||
|
||||
options = {
|
||||
"kind": method,
|
||||
"mode": mode
|
||||
|
||||
}
|
||||
request_form['options'] = json.dumps(options)
|
||||
|
||||
return request_form
|
||||
|
||||
def process(self, request_form):
|
||||
try:
|
||||
# Call the process route of NOVA-Server with our request form.
|
||||
response = send_request_to_nova_server(request_form, self.options['nova_server'])
|
||||
if bool(json.loads(response)['success']):
|
||||
print("Job " + request_form['jobID'] + " sent to NOVA-server")
|
||||
|
||||
pool = ThreadPool(processes=1)
|
||||
thread = pool.apply_async(check_nova_server_status, (request_form['jobID'], self.options['nova_server']))
|
||||
print("Wait for results of NOVA-Server...")
|
||||
result = thread.get()
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
raise Exception(e)
|
||||
|
||||
# We build an example here that we can call by either calling this file directly from the main directory,
|
||||
# or by adding it to our playground. You can call the example and adjust it to your needs or redefine it in the
|
||||
# playground or elsewhere
|
||||
def build_example(name, identifier, admin_config, server_address):
|
||||
dvm_config = DVMConfig()
|
||||
dvm_config.PRIVATE_KEY = check_and_set_private_key(identifier)
|
||||
dvm_config.LNBITS_INVOICE_KEY = os.getenv("LNBITS_INVOICE_KEY")
|
||||
dvm_config.LNBITS_URL = os.getenv("LNBITS_HOST")
|
||||
|
||||
nip90params = {
|
||||
"method": {
|
||||
"required": False,
|
||||
"values": ["prompt", "analysis"]
|
||||
},
|
||||
"mode": {
|
||||
"required": False,
|
||||
"values": ["best", "classic", "fast", "negative"]
|
||||
}
|
||||
}
|
||||
nip89info = {
|
||||
"name": name,
|
||||
"image": "https://image.nostr.build/229c14e440895da30de77b3ca145d66d4b04efb4027ba3c44ca147eecde891f1.jpg",
|
||||
"about": "I analyse Images an return a prompt or a prompt analysis",
|
||||
"encryptionSupported": True,
|
||||
"cashuAccepted": True,
|
||||
"nip90Params": nip90params
|
||||
}
|
||||
|
||||
# A module might have options it can be initialized with, here we set a default model, lora and the nova-server
|
||||
options = {'nova_server': server_address}
|
||||
|
||||
nip89config = NIP89Config()
|
||||
nip89config.DTAG = check_and_set_d_tag(identifier, name, dvm_config.PRIVATE_KEY,
|
||||
nip89info["image"])
|
||||
nip89config.CONTENT = json.dumps(nip89info)
|
||||
# We add an optional AdminConfig for this one, and tell the dvm to rebroadcast its NIP89
|
||||
return ImageInterrogator(name=name, dvm_config=dvm_config, nip89config=nip89config,
|
||||
admin_config=admin_config, options=options)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
env_path = Path('.env')
|
||||
if env_path.is_file():
|
||||
print(f'loading environment from {env_path.resolve()}')
|
||||
dotenv.load_dotenv(env_path, verbose=True, override=True)
|
||||
else:
|
||||
raise FileNotFoundError(f'.env file not found at {env_path} ')
|
||||
|
||||
admin_config = AdminConfig()
|
||||
admin_config.REBROADCAST_NIP89 = False
|
||||
admin_config.UPDATE_PROFILE = False
|
||||
admin_config.LUD16 = ""
|
||||
dvm = build_example("Image Interrogator", "imageinterrogator", admin_config, os.getenv("NOVA_SERVER"))
|
||||
dvm.run()
|
||||
|
||||
keep_alive()
|
@ -1,158 +0,0 @@
|
||||
import json
|
||||
import os
|
||||
from multiprocessing.pool import ThreadPool
|
||||
from pathlib import Path
|
||||
|
||||
import dotenv
|
||||
|
||||
from backends.nova_server import check_nova_server_status, send_request_to_nova_server
|
||||
from interfaces.dvmtaskinterface import DVMTaskInterface
|
||||
from utils.admin_utils import AdminConfig
|
||||
from utils.backend_utils import keep_alive
|
||||
from utils.dvmconfig import DVMConfig
|
||||
from utils.nip89_utils import NIP89Config, check_and_set_d_tag
|
||||
from utils.definitions import EventDefinitions
|
||||
from utils.nostr_utils import check_and_set_private_key
|
||||
|
||||
"""
|
||||
This File contains a Module to upscale an image from an url by factor 2-4
|
||||
|
||||
Accepted Inputs: link to image (url)
|
||||
Outputs: An url to an Image
|
||||
Params: -upscale 2,3,4
|
||||
"""
|
||||
|
||||
|
||||
class ImageUpscale(DVMTaskInterface):
|
||||
KIND: int = EventDefinitions.KIND_NIP90_GENERATE_IMAGE
|
||||
TASK: str = "image-to-image"
|
||||
FIX_COST: float = 20
|
||||
|
||||
def __init__(self, name, dvm_config: DVMConfig, nip89config: NIP89Config,
|
||||
admin_config: AdminConfig = None, options=None):
|
||||
super().__init__(name, dvm_config, nip89config, admin_config, options)
|
||||
|
||||
def is_input_supported(self, tags):
|
||||
hasurl = False
|
||||
for tag in tags:
|
||||
if tag.as_vec()[0] == 'i':
|
||||
input_value = tag.as_vec()[1]
|
||||
input_type = tag.as_vec()[2]
|
||||
if input_type == "url":
|
||||
hasurl = True
|
||||
|
||||
if not hasurl:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def create_request_from_nostr_event(self, event, client=None, dvm_config=None):
|
||||
request_form = {"jobID": event.id().to_hex() + "_" + self.NAME.replace(" ", "")}
|
||||
request_form["trainerFilePath"] = r'modules\image_upscale\image_upscale_realesrgan.trainer'
|
||||
url = ""
|
||||
out_scale = 4
|
||||
|
||||
for tag in event.tags():
|
||||
if tag.as_vec()[0] == 'i':
|
||||
input_type = tag.as_vec()[2]
|
||||
if input_type == "url":
|
||||
url = tag.as_vec()[1]
|
||||
|
||||
elif tag.as_vec()[0] == 'param':
|
||||
print("Param: " + tag.as_vec()[1] + ": " + tag.as_vec()[2])
|
||||
if tag.as_vec()[1] == "upscale":
|
||||
out_scale = tag.as_vec()[2]
|
||||
|
||||
|
||||
|
||||
io_input_image = {
|
||||
"id": "input_image",
|
||||
"type": "input",
|
||||
"src": "url:Image",
|
||||
"uri": url
|
||||
}
|
||||
|
||||
io_output = {
|
||||
"id": "output_image",
|
||||
"type": "output",
|
||||
"src": "request:image"
|
||||
}
|
||||
|
||||
request_form['data'] = json.dumps([io_input_image, io_output])
|
||||
|
||||
options = {
|
||||
"outscale": out_scale,
|
||||
|
||||
}
|
||||
request_form['options'] = json.dumps(options)
|
||||
|
||||
return request_form
|
||||
|
||||
def process(self, request_form):
|
||||
try:
|
||||
# Call the process route of NOVA-Server with our request form.
|
||||
response = send_request_to_nova_server(request_form, self.options['nova_server'])
|
||||
if bool(json.loads(response)['success']):
|
||||
print("Job " + request_form['jobID'] + " sent to NOVA-server")
|
||||
|
||||
pool = ThreadPool(processes=1)
|
||||
thread = pool.apply_async(check_nova_server_status, (request_form['jobID'], self.options['nova_server']))
|
||||
print("Wait for results of NOVA-Server...")
|
||||
result = thread.get()
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
raise Exception(e)
|
||||
|
||||
# We build an example here that we can call by either calling this file directly from the main directory,
|
||||
# or by adding it to our playground. You can call the example and adjust it to your needs or redefine it in the
|
||||
# playground or elsewhere
|
||||
def build_example(name, identifier, admin_config, server_address):
|
||||
dvm_config = DVMConfig()
|
||||
dvm_config.PRIVATE_KEY = check_and_set_private_key(identifier)
|
||||
dvm_config.LNBITS_INVOICE_KEY = os.getenv("LNBITS_INVOICE_KEY")
|
||||
dvm_config.LNBITS_URL = os.getenv("LNBITS_HOST")
|
||||
|
||||
nip90params = {
|
||||
"upscale": {
|
||||
"required": False,
|
||||
"values": ["2", "3", "4"]
|
||||
}
|
||||
}
|
||||
nip89info = {
|
||||
"name": name,
|
||||
"image": "https://image.nostr.build/229c14e440895da30de77b3ca145d66d4b04efb4027ba3c44ca147eecde891f1.jpg",
|
||||
"about": "I upscale an image using realESRGan up to factor 4 (default is factor 4)",
|
||||
"encryptionSupported": True,
|
||||
"cashuAccepted": True,
|
||||
"nip90Params": nip90params
|
||||
}
|
||||
|
||||
# A module might have options it can be initialized with, here we set a default model, lora and the nova-server
|
||||
options = {'nova_server': server_address}
|
||||
|
||||
nip89config = NIP89Config()
|
||||
nip89config.DTAG = check_and_set_d_tag(identifier, name, dvm_config.PRIVATE_KEY,
|
||||
nip89info["image"])
|
||||
nip89config.CONTENT = json.dumps(nip89info)
|
||||
# We add an optional AdminConfig for this one, and tell the dvm to rebroadcast its NIP89
|
||||
return ImageUpscale(name=name, dvm_config=dvm_config, nip89config=nip89config,
|
||||
admin_config=admin_config, options=options)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
env_path = Path('.env')
|
||||
if env_path.is_file():
|
||||
print(f'loading environment from {env_path.resolve()}')
|
||||
dotenv.load_dotenv(env_path, verbose=True, override=True)
|
||||
else:
|
||||
raise FileNotFoundError(f'.env file not found at {env_path} ')
|
||||
|
||||
admin_config = AdminConfig()
|
||||
admin_config.REBROADCAST_NIP89 = False
|
||||
admin_config.UPDATE_PROFILE = False
|
||||
admin_config.LUD16 = ""
|
||||
dvm = build_example("Image Upscaler", "imageupscale", admin_config, os.getenv("NOVA_SERVER"))
|
||||
dvm.run()
|
||||
|
||||
keep_alive()
|
@ -1,205 +0,0 @@
|
||||
import json
|
||||
import os
|
||||
import time
|
||||
from multiprocessing.pool import ThreadPool
|
||||
from pathlib import Path
|
||||
|
||||
import dotenv
|
||||
|
||||
from backends.nova_server import check_nova_server_status, send_request_to_nova_server, send_file_to_nova_server
|
||||
from interfaces.dvmtaskinterface import DVMTaskInterface
|
||||
from utils.admin_utils import AdminConfig
|
||||
from utils.backend_utils import keep_alive
|
||||
from utils.dvmconfig import DVMConfig
|
||||
from utils.mediasource_utils import organize_input_media_data
|
||||
from utils.nip89_utils import NIP89Config, check_and_set_d_tag
|
||||
from utils.definitions import EventDefinitions
|
||||
from utils.nostr_utils import check_and_set_private_key
|
||||
|
||||
"""
|
||||
This File contains a Module to transform A media file input on NOVA-Server and receive results back.
|
||||
|
||||
Accepted Inputs: Url to media file (url)
|
||||
Outputs: Transcribed text
|
||||
|
||||
"""
|
||||
|
||||
|
||||
class SpeechToTextWhisperX(DVMTaskInterface):
|
||||
KIND: int = EventDefinitions.KIND_NIP90_EXTRACT_TEXT
|
||||
TASK: str = "speech-to-text"
|
||||
FIX_COST: float = 10
|
||||
PER_UNIT_COST: float = 0.1
|
||||
|
||||
def __init__(self, name, dvm_config: DVMConfig, nip89config: NIP89Config,
|
||||
admin_config: AdminConfig = None, options=None):
|
||||
super().__init__(name, dvm_config, nip89config, admin_config, options)
|
||||
|
||||
def is_input_supported(self, tags):
|
||||
for tag in tags:
|
||||
if tag.as_vec()[0] == 'i':
|
||||
input_value = tag.as_vec()[1]
|
||||
input_type = tag.as_vec()[2]
|
||||
if input_type != "url":
|
||||
return False
|
||||
|
||||
elif tag.as_vec()[0] == 'output':
|
||||
output = tag.as_vec()[1]
|
||||
if output == "" or not (output == "text/plain"):
|
||||
print("Output format not supported, skipping..")
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def create_request_from_nostr_event(self, event, client=None, dvm_config=None):
|
||||
request_form = {"jobID": event.id().to_hex() + "_" + self.NAME.replace(" ", ""),
|
||||
"trainerFilePath": 'modules\\whisperx\\whisperx_transcript.trainer'}
|
||||
|
||||
if self.options.get("default_model"):
|
||||
model = self.options['default_model']
|
||||
else:
|
||||
model = "base"
|
||||
if self.options.get("alignment"):
|
||||
alignment = self.options['alignment']
|
||||
else:
|
||||
alignment = "raw"
|
||||
|
||||
url = ""
|
||||
input_type = "url"
|
||||
start_time = 0
|
||||
end_time = 0
|
||||
media_format = "audio/mp3"
|
||||
|
||||
for tag in event.tags():
|
||||
if tag.as_vec()[0] == 'i':
|
||||
input_type = tag.as_vec()[2]
|
||||
if input_type == "url":
|
||||
url = tag.as_vec()[1]
|
||||
|
||||
elif tag.as_vec()[0] == 'param':
|
||||
print("Param: " + tag.as_vec()[1] + ": " + tag.as_vec()[2])
|
||||
if tag.as_vec()[1] == "alignment":
|
||||
alignment = tag.as_vec()[2]
|
||||
elif tag.as_vec()[1] == "model":
|
||||
model = tag.as_vec()[2]
|
||||
elif tag.as_vec()[1] == "range":
|
||||
try:
|
||||
t = time.strptime(tag.as_vec()[2], "%H:%M:%S")
|
||||
seconds = t.tm_hour * 60 * 60 + t.tm_min * 60 + t.tm_sec
|
||||
start_time = float(seconds)
|
||||
except:
|
||||
try:
|
||||
t = time.strptime(tag.as_vec()[2], "%M:%S")
|
||||
seconds = t.tm_min * 60 + t.tm_sec
|
||||
start_time = float(seconds)
|
||||
except:
|
||||
start_time = tag.as_vec()[2]
|
||||
try:
|
||||
t = time.strptime(tag.as_vec()[3], "%H:%M:%S")
|
||||
seconds = t.tm_hour * 60 * 60 + t.tm_min * 60 + t.tm_sec
|
||||
end_time = float(seconds)
|
||||
except:
|
||||
try:
|
||||
t = time.strptime(tag.as_vec()[3], "%M:%S")
|
||||
seconds = t.tm_min * 60 + t.tm_sec
|
||||
end_time = float(seconds)
|
||||
except:
|
||||
end_time = float(tag.as_vec()[3])
|
||||
|
||||
filepath = organize_input_media_data(url, input_type, start_time, end_time, dvm_config, client, True, media_format)
|
||||
path_on_server = send_file_to_nova_server(os.path.realpath(filepath), self.options['nova_server'])
|
||||
|
||||
io_input = {
|
||||
"id": "audio",
|
||||
"type": "input",
|
||||
"src": "file:stream",
|
||||
"uri": path_on_server
|
||||
}
|
||||
|
||||
io_output = {
|
||||
"id": "transcript",
|
||||
"type": "output",
|
||||
"src": "request:annotation:free"
|
||||
}
|
||||
|
||||
request_form['data'] = json.dumps([io_input, io_output])
|
||||
|
||||
options = {
|
||||
"model": model,
|
||||
"alignment_mode": alignment,
|
||||
}
|
||||
request_form['options'] = json.dumps(options)
|
||||
return request_form
|
||||
|
||||
def process(self, request_form):
|
||||
try:
|
||||
# Call the process route of NOVA-Server with our request form.
|
||||
response = send_request_to_nova_server(request_form, self.options['nova_server'])
|
||||
if bool(json.loads(response)['success']):
|
||||
print("Job " + request_form['jobID'] + " sent to NOVA-server")
|
||||
|
||||
pool = ThreadPool(processes=1)
|
||||
thread = pool.apply_async(check_nova_server_status, (request_form['jobID'], self.options['nova_server']))
|
||||
print("Wait for results of NOVA-Server...")
|
||||
result = thread.get()
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
raise Exception(e)
|
||||
|
||||
# We build an example here that we can call by either calling this file directly from the main directory,
|
||||
# or by adding it to our playground. You can call the example and adjust it to your needs or redefine it in the
|
||||
# playground or elsewhere
|
||||
def build_example(name, identifier, admin_config, server_address):
|
||||
dvm_config = DVMConfig()
|
||||
dvm_config.PRIVATE_KEY = check_and_set_private_key(identifier)
|
||||
dvm_config.LNBITS_INVOICE_KEY = os.getenv("LNBITS_INVOICE_KEY")
|
||||
dvm_config.LNBITS_URL = os.getenv("LNBITS_HOST")
|
||||
|
||||
# A module might have options it can be initialized with, here we set a default model, and the nova-server
|
||||
# address it should use. These parameters can be freely defined in the task component
|
||||
options = {'default_model': "base", 'nova_server': server_address}
|
||||
|
||||
nip90params = {
|
||||
"model": {
|
||||
"required": False,
|
||||
"values": ["base", "tiny", "small", "medium", "large-v1", "large-v2", "tiny.en", "base.en", "small.en",
|
||||
"medium.en"]
|
||||
},
|
||||
"alignment": {
|
||||
"required": False,
|
||||
"values": ["raw", "segment", "word"]
|
||||
}
|
||||
}
|
||||
nip89info = {
|
||||
"name": name,
|
||||
"image": "https://image.nostr.build/c33ca6fc4cc038ca4adb46fdfdfda34951656f87ee364ef59095bae1495ce669.jpg",
|
||||
"about": "I extract text from media files with WhisperX",
|
||||
"encryptionSupported": True,
|
||||
"cashuAccepted": True,
|
||||
"nip90Params": nip90params
|
||||
}
|
||||
nip89config = NIP89Config()
|
||||
nip89config.DTAG = check_and_set_d_tag(identifier, name, dvm_config.PRIVATE_KEY,
|
||||
nip89info["image"])
|
||||
nip89config.CONTENT = json.dumps(nip89info)
|
||||
return SpeechToTextWhisperX(name=name, dvm_config=dvm_config, nip89config=nip89config,
|
||||
admin_config=admin_config, options=options)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
env_path = Path('.env')
|
||||
if env_path.is_file():
|
||||
print(f'loading environment from {env_path.resolve()}')
|
||||
dotenv.load_dotenv(env_path, verbose=True, override=True)
|
||||
else:
|
||||
raise FileNotFoundError(f'.env file not found at {env_path} ')
|
||||
|
||||
admin_config = AdminConfig()
|
||||
admin_config.REBROADCAST_NIP89 = False
|
||||
admin_config.UPDATE_PROFILE = False
|
||||
admin_config.LUD16 = ""
|
||||
dvm = build_example("Whisperer", "whisperx", admin_config, os.getenv("NOVA_SERVER"))
|
||||
dvm.run()
|
||||
|
||||
keep_alive()
|
Loading…
x
Reference in New Issue
Block a user