nostrdvm/nostr_dvm/tasks/imagegeneration_sd21_mlx.py

181 lines
6.6 KiB
Python

import json
import os
from PIL import Image
from nostr_sdk import Kind
from tqdm import tqdm
from nostr_dvm.interfaces.dvmtaskinterface import DVMTaskInterface, process_venv
from nostr_dvm.utils.admin_utils import AdminConfig
from nostr_dvm.utils.definitions import EventDefinitions
from nostr_dvm.utils.dvmconfig import DVMConfig, build_default_config
from nostr_dvm.utils.nip88_utils import NIP88Config
from nostr_dvm.utils.nip89_utils import NIP89Config, check_and_set_d_tag
from nostr_dvm.utils.output_utils import upload_media_to_hoster
from nostr_dvm.utils.zap_utils import get_price_per_sat
"""
This File contains a Module to generate an Image on Macs with M1/M2/M3 chips and receive results back.
Accepted Inputs: Prompt (text)
Outputs: An url to an Image
Params:
"""
class ImageGenerationMLX(DVMTaskInterface):
KIND: Kind = EventDefinitions.KIND_NIP90_GENERATE_IMAGE
TASK: str = "text-to-image"
FIX_COST: float = 120
dependencies = [("nostr-dvm", "nostr-dvm"),
("mlx", "mlx"),
("safetensors", "safetensors"),
("huggingface-hub", "huggingface-hub"),
("regex", "regex"),
("tqdm", "tqdm"),
]
async def init_dvm(self, name, dvm_config: DVMConfig, nip89config: NIP89Config, nip88config: NIP88Config = None,
admin_config: AdminConfig = None, options=None):
dvm_config.SCRIPT = os.path.abspath(__file__)
async def is_input_supported(self, tags, client=None, dvm_config=None):
for tag in tags:
if tag.as_vec()[0] == 'i':
input_value = tag.as_vec()[1]
input_type = tag.as_vec()[2]
if input_type != "text":
return False
elif tag.as_vec()[0] == 'output':
output = tag.as_vec()[1]
if (output == "" or
not (output == "image/png" or "image/jpg"
or output == "image/png;format=url" or output == "image/jpg;format=url")):
print("Output format not supported, skipping..")
return False
return True
async def create_request_from_nostr_event(self, event, client=None, dvm_config=None):
request_form = {"jobID": event.id().to_hex() + "_" + self.NAME.replace(" ", "")}
prompt = ""
width = "1024"
height = "1024"
for tag in event.tags().to_vec():
if tag.as_vec()[0] == 'i':
input_type = tag.as_vec()[2]
if input_type == "text":
prompt = tag.as_vec()[1]
elif tag.as_vec()[0] == 'param':
print("Param: " + tag.as_vec()[1] + ": " + tag.as_vec()[2])
if tag.as_vec()[1] == "size":
if len(tag.as_vec()) > 3:
width = (tag.as_vec()[2])
height = (tag.as_vec()[3])
elif len(tag.as_vec()) == 3:
split = tag.as_vec()[2].split("x")
if len(split) > 1:
width = split[0]
height = split[1]
elif tag.as_vec()[1] == "model":
model = tag.as_vec()[2]
elif tag.as_vec()[1] == "quality":
quality = tag.as_vec()[2]
options = {
"prompt": prompt,
"size": width + "x" + height,
"number": 1
}
request_form['options'] = json.dumps(options)
return request_form
async def process(self, request_form):
try:
import mlx.core as mx
from nostr_dvm.backends.mlx.modules.stable_diffusion import StableDiffusion
options = self.set_options(request_form)
sd = StableDiffusion()
cfg_weight = 7.5
batchsize = 1
n_rows = 1
steps = 50
n_images = options["number"]
# Generate the latent vectors using diffusion
latents = sd.generate_latents(
options["prompt"],
n_images=n_images,
cfg_weight=cfg_weight,
num_steps=steps,
negative_text="",
)
for x_t in tqdm(latents, total=steps):
mx.simplify(x_t)
mx.simplify(x_t)
mx.eval(x_t)
# Decode them into images
decoded = []
for i in tqdm(range(0, 1, batchsize)):
decoded.append(sd.decode(x_t[i: i + batchsize]))
mx.eval(decoded[-1])
# Arrange them on a grid
x = mx.concatenate(decoded, axis=0)
x = mx.pad(x, [(0, 0), (8, 8), (8, 8), (0, 0)])
B, H, W, C = x.shape
x = x.reshape(n_rows, B // n_rows, H, W, C).transpose(0, 2, 1, 3, 4)
x = x.reshape(n_rows * H, B // n_rows * W, C)
x = (x * 255).astype(mx.uint8)
# Save them to disc
image = Image.fromarray(x.__array__())
image.save("./outputs/image.jpg")
result = await upload_media_to_hoster("./outputs/image.jpg")
return result
except Exception as e:
print("Error in Module")
raise Exception(e)
# We build an example here that we can call by either calling this file directly from the main directory,
# or by adding it to our playground. You can call the example and adjust it to your needs or redefine it in the
# playground or elsewhere
def build_example(name, identifier, admin_config):
dvm_config = build_default_config(identifier)
admin_config.LUD16 = dvm_config.LN_ADDRESS
profit_in_sats = 10
dvm_config.FIX_COST = int(((4.0 / (get_price_per_sat("USD") * 100)) + profit_in_sats))
nip89info = {
"name": name,
"picture": "https://image.nostr.build/c33ca6fc4cc038ca4adb46fdfdfda34951656f87ee364ef59095bae1495ce669.jpg",
"about": "I use Replicate to run StableDiffusion XL",
"supportsEncryption": True,
"acceptsNutZaps": dvm_config.ENABLE_NUTZAP,
"nip90Params": {
"size": {
"required": False,
"values": ["1024:1024", "1024x1792", "1792x1024"]
}
}
}
nip89config = NIP89Config()
nip89config.DTAG = check_and_set_d_tag(identifier, name, dvm_config.PRIVATE_KEY, nip89info["picture"])
nip89config.CONTENT = json.dumps(nip89info)
return ImageGenerationMLX(name=name, dvm_config=dvm_config, nip89config=nip89config,
admin_config=admin_config)
if __name__ == '__main__':
process_venv(ImageGenerationMLX)