kvcache: Use Cast instead of Copy for flash attention masks

Flash attention kernels require the mask of the KV cache be a F16
rather than an F32. We can use the GGML operation ggml_cast to do
this rather than doing it ourselves, which allows reuse of a
preallocated buffer in the graph rather than allocating a new one
for each batch. This improves token generation performance with
flash attention by 10-30% (with gpt-oss). This also makes performance
with flash attention better than without it, as expected.
This commit is contained in:
Jesse Gross
2025-08-19 09:52:18 -07:00
committed by Jesse Gross
parent f804e8a460
commit 05ccb17c6e
3 changed files with 29 additions and 20 deletions

View File

@@ -378,9 +378,7 @@ func (c *Causal) buildMask(ctx ml.Context) ml.Tensor {
maskTensor := ctx.Input().FromFloatSlice(mask, length, batchSize)
if c.config.MaskDType != ml.DTypeF32 {
out := ctx.Input().Empty(c.config.MaskDType, maskTensor.Shape()...)
ctx.Forward(maskTensor.Copy(ctx, out))
maskTensor = out
maskTensor = maskTensor.Cast(ctx, c.config.MaskDType)
}
return maskTensor

View File

@@ -396,6 +396,7 @@ type Tensor interface {
Shape() []int
DType() DType
Cast(ctx Context, dtype DType) Tensor
Bytes() []byte
Floats() []float32

View File

@@ -843,23 +843,7 @@ func (c *Context) newTensor(dtype ml.DType, shape []int) ml.Tensor {
panic("set Input or Layer before creating tensors")
}
var cdtype uint32
switch dtype {
case ml.DTypeF32:
cdtype = C.GGML_TYPE_F32
case ml.DTypeF16:
cdtype = C.GGML_TYPE_F16
case ml.DTypeQ80:
cdtype = C.GGML_TYPE_Q8_0
case ml.DTypeQ40:
cdtype = C.GGML_TYPE_Q4_0
case ml.DTypeI32:
cdtype = C.GGML_TYPE_I32
case ml.DTypeMXFP4:
cdtype = C.GGML_TYPE_MXFP4
default:
panic("unsupported dtype")
}
cdtype := ggmlDType(dtype)
if len(shape) < 1 || shape[0] == 0 {
var shape C.int64_t = 0
@@ -1056,6 +1040,32 @@ func (t *Tensor) DType() ml.DType {
}
}
func ggmlDType(dtype ml.DType) uint32 {
switch dtype {
case ml.DTypeF32:
return C.GGML_TYPE_F32
case ml.DTypeF16:
return C.GGML_TYPE_F16
case ml.DTypeQ80:
return C.GGML_TYPE_Q8_0
case ml.DTypeQ40:
return C.GGML_TYPE_Q4_0
case ml.DTypeI32:
return C.GGML_TYPE_I32
case ml.DTypeMXFP4:
return C.GGML_TYPE_MXFP4
default:
panic("unsupported dtype")
}
}
func (t *Tensor) Cast(ctx ml.Context, dtype ml.DType) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_cast(ctx.(*Context).ctx, t.t, ggmlDType(dtype)),
}
}
func (t *Tensor) Neg(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,