backend: Consistently use int (vs. int64) for tensor shapes

Currently there is a mixture of int and int64 used when dealing with
tensor dimensions and shapes, which causes unnecessary conversions -
they all should be the same type.

In general, most interfaces (such as Pytorch) use int64 for
generality but most implementations (such as CUDA) use int32 for
performance. There isn't much benefit to us to being more flexible
than the implementations we are likely to run on.

In addition, as a practical matter, a model with a tensor with a single
dimension larger than 32 bits is unlikely to run on a 32-bit machine.
This commit is contained in:
Jesse Gross
2025-02-03 17:21:57 -08:00
committed by Jesse Gross
parent 7e13f568dc
commit 0e38297f87
6 changed files with 59 additions and 50 deletions

View File

@@ -10,7 +10,7 @@ import (
type Options struct {
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
hiddenSize, numHeads, numKVHeads int64
hiddenSize, numHeads, numKVHeads int
eps, ropeBase, ropeScale float32
ropeDim uint32
}
@@ -41,9 +41,9 @@ func New(c ml.Config) (model.Model, error) {
),
Layers: make([]Layer, c.Uint("block_count")),
Options: &Options{
hiddenSize: int64(c.Uint("embedding_length")),
numHeads: int64(c.Uint("attention.head_count")),
numKVHeads: int64(c.Uint("attention.head_count_kv")),
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),

View File

@@ -173,7 +173,7 @@ func (d *TextDecoder) Forward(ctx ml.Context, hiddenState, positionIDs, mask, cr
type TextModelOptions struct {
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
hiddenSize, numHeads, numKVHeads int64
hiddenSize, numHeads, numKVHeads int
eps, ropeBase, ropeScale float32
ropeDim uint32
@@ -212,9 +212,9 @@ func newTextModel(c ml.Config) *TextModel {
return &TextModel{
Transformer: &TextDecoder{Layers: decoderLayers},
TextModelOptions: &TextModelOptions{
hiddenSize: int64(c.Uint("embedding_length")),
numHeads: int64(c.Uint("attention.head_count")),
numKVHeads: int64(c.Uint("attention.head_count_kv")),
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),

View File

@@ -8,7 +8,7 @@ import (
"github.com/ollama/ollama/ml/nn"
)
var batchSize int64 = 1
var batchSize int = 1
type VisionSelfAttention struct {
Query *nn.Linear `gguf:"attn_q"`
@@ -99,7 +99,7 @@ func (e *VisionEncoder) Forward(ctx ml.Context, hiddenState ml.Tensor, intermedi
var intermediateHiddenStates []ml.Tensor
for i, layer := range e.Layers {
if slices.Contains(intermediateLayersIndices, uint32(i)) {
intermediateHiddenStates = append(intermediateHiddenStates, hiddenState.Reshape(ctx, append([]int64{1}, hiddenState.Shape()...)...))
intermediateHiddenStates = append(intermediateHiddenStates, hiddenState.Reshape(ctx, append([]int{1}, hiddenState.Shape()...)...))
}
hiddenState = layer.Forward(ctx, hiddenState, opts)
@@ -131,7 +131,7 @@ type PrecomputedPositionEmbedding struct {
TilePositionEmbeddingGate ml.Tensor `gguf:"tile_position_embd.gate"`
}
func (e *PrecomputedPositionEmbedding) Forward(ctx ml.Context, hiddenState, positionIDs, aspectRatioIDs ml.Tensor, numPositions int64, opts *VisionModelOptions) ml.Tensor {
func (e *PrecomputedPositionEmbedding) Forward(ctx ml.Context, hiddenState, positionIDs, aspectRatioIDs ml.Tensor, numPositions int, opts *VisionModelOptions) ml.Tensor {
positionEmbedding := e.PositionEmbedding.Forward(ctx, positionIDs)
if e.PositionEmbeddingGate != nil {
positionEmbedding = positionEmbedding.Mul(ctx, e.PositionEmbeddingGate)
@@ -149,7 +149,7 @@ func (e *PrecomputedPositionEmbedding) Forward(ctx ml.Context, hiddenState, posi
}
type VisionModelOptions struct {
hiddenSize, numHeads, numTiles int64
hiddenSize, numHeads, numTiles int
imageSize, patchSize int
eps float32
@@ -174,7 +174,7 @@ type VisionModel struct {
}
func (m *VisionModel) Forward(ctx ml.Context, pixelValues, positionIDs, aspectRatioIDs ml.Tensor) ml.Tensor {
numPatches := int64((m.imageSize / m.patchSize) * (m.imageSize / m.patchSize))
numPatches := (m.imageSize / m.patchSize) * (m.imageSize / m.patchSize)
numPositions := numPatches
if m.ClassEmbedding != nil {
numPositions++
@@ -185,7 +185,7 @@ func (m *VisionModel) Forward(ctx ml.Context, pixelValues, positionIDs, aspectRa
hiddenState = hiddenState.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
hiddenState = m.PreTilePositionEmbedding.Forward(ctx, hiddenState, aspectRatioIDs, m.VisionModelOptions)
hiddenState = m.ClassEmbedding.Stack(ctx, 2, slices.Repeat([]ml.Tensor{m.ClassEmbedding}, int(m.numTiles)-1)...).Concat(ctx, hiddenState, 1)
hiddenState = m.ClassEmbedding.Stack(ctx, 2, slices.Repeat([]ml.Tensor{m.ClassEmbedding}, m.numTiles-1)...).Concat(ctx, hiddenState, 1)
hiddenState = m.PositionEmbedding.Forward(ctx, hiddenState, positionIDs, aspectRatioIDs, numPositions, m.VisionModelOptions)
hiddenState = m.PreLayerNorm.Forward(ctx, hiddenState, m.eps)
@@ -205,7 +205,7 @@ func (m *VisionModel) Forward(ctx ml.Context, pixelValues, positionIDs, aspectRa
hiddenState, _ = m.GlobalTransformer.Forward(ctx, hiddenState, nil, m.VisionModelOptions)
hiddenStates := intermediateHiddenStates[0].Stack(ctx, 0, intermediateHiddenStates[1:]...)
hiddenStates = hiddenStates.Reshape(ctx, int64(len(intermediateHiddenStates))*m.hiddenSize, numPositions+numPaddingPatches, m.numTiles, batchSize)
hiddenStates = hiddenStates.Reshape(ctx, len(intermediateHiddenStates)*m.hiddenSize, numPositions+numPaddingPatches, m.numTiles, batchSize)
hiddenStates = hiddenStates.Unpad(ctx, 0, numPaddingPatches, 0, 0)
hiddenState = hiddenState.Reshape(ctx, m.hiddenSize, numPositions+numPaddingPatches, m.numTiles, batchSize)
@@ -219,9 +219,9 @@ func newVisionModel(c ml.Config) *VisionModel {
GlobalTransformer: &VisionEncoder{Layers: make([]VisionEncoderLayer, c.Uint("vision.global.block_count"))},
VisionModelOptions: &VisionModelOptions{
hiddenSize: int64(c.Uint("vision.embedding_length")),
numHeads: int64(c.Uint("vision.attention.head_count")),
numTiles: int64(c.Uint("vision.max_num_tiles")),
hiddenSize: int(c.Uint("vision.embedding_length")),
numHeads: int(c.Uint("vision.attention.head_count")),
numTiles: int(c.Uint("vision.max_num_tiles")),
imageSize: int(c.Uint("vision.image_size")),
patchSize: int(c.Uint("vision.patch_size")),