mirror of
https://github.com/ollama/ollama.git
synced 2025-05-30 17:19:14 +02:00
kvcache: Pass granular cache size into implementations
Currently the runner computes the kv size needed and creates a cache of that size. This is the context size times number of parallel sequences. Cache implementations can make better decisions about their memory usage, so instead pass in the required capacity, number of sequences and maximum batch size. For now, the causal cache just uses this to compute the size in the same way as before.
This commit is contained in:
parent
6d1103048e
commit
3ed7ad3ab3
@ -43,8 +43,13 @@ type Cache interface {
|
||||
|
||||
// ** cache management **
|
||||
|
||||
// Init sets up runtime parameters
|
||||
Init(backend ml.Backend, dtype ml.DType, capacity int32)
|
||||
// Init sets up runtime parameters.
|
||||
// backend: Used to allocate cache data storage and execute management operations (such as defrag)
|
||||
// dtype: The data type for storing cache entries
|
||||
// maxSequences: The maximum number of sequences stored in the cache - across all batches
|
||||
// capacity: The number of cache entries to store, per sequence
|
||||
// maxBatch: The maximum number of tokens that can occur in a single batch
|
||||
Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int)
|
||||
|
||||
// Close closes the cache and frees resources associated with it
|
||||
Close()
|
||||
|
@ -20,7 +20,6 @@ type shiftFn func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, e
|
||||
// The mask is of shape history size, batch size
|
||||
type Causal struct {
|
||||
DType ml.DType
|
||||
Capacity int32
|
||||
windowSize int32
|
||||
|
||||
opts CausalOptions
|
||||
@ -98,7 +97,7 @@ func NewSWACache(windowSize int32, shift shiftFn) *Causal {
|
||||
}
|
||||
}
|
||||
|
||||
func (c *Causal) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
|
||||
func (c *Causal) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
|
||||
if c.config == nil {
|
||||
var config ml.CacheConfig
|
||||
if cc, ok := backend.(ml.BackendCacheConfig); ok {
|
||||
@ -119,9 +118,11 @@ func (c *Causal) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
|
||||
c.config.MaskDType = ml.DTypeF32
|
||||
}
|
||||
|
||||
cacheSize := maxSequences * capacity
|
||||
cacheSize = roundUp(cacheSize, c.config.CachePadding)
|
||||
c.cells = make([]cacheCell, cacheSize)
|
||||
|
||||
c.DType = dtype
|
||||
c.Capacity = int32(roundUp(int(capacity), c.config.CachePadding))
|
||||
c.cells = make([]cacheCell, c.Capacity)
|
||||
c.cellRanges = make(map[int]cellRange)
|
||||
c.backend = backend
|
||||
}
|
||||
@ -210,7 +211,7 @@ func (c *Causal) findStartLoc() (int, error) {
|
||||
}
|
||||
}
|
||||
|
||||
return 0, fmt.Errorf("%w (length: %v)", ErrKvCacheFull, c.Capacity)
|
||||
return 0, fmt.Errorf("%w (length: %v)", ErrKvCacheFull, len(c.cells))
|
||||
}
|
||||
|
||||
func roundDown(length, pad int) int {
|
||||
@ -265,7 +266,7 @@ func (c *Causal) buildMask(ctx ml.Context) (ml.Tensor, error) {
|
||||
return maskTensor, nil
|
||||
}
|
||||
|
||||
func (c *Causal) moveCells(ctx ml.Context, src, dst, len int) {
|
||||
func (c *Causal) moveCells(ctx ml.Context, src, dst, length int) {
|
||||
for i, key := range c.keys {
|
||||
if key == nil {
|
||||
continue
|
||||
@ -275,8 +276,8 @@ func (c *Causal) moveCells(ctx ml.Context, src, dst, len int) {
|
||||
numKVHeads := key.Dim(1)
|
||||
rowSize := key.Stride(2)
|
||||
|
||||
kSrcView := key.View(ctx, rowSize*src, kHeadDim*numKVHeads*len)
|
||||
kDstView := key.View(ctx, rowSize*dst, kHeadDim*numKVHeads*len)
|
||||
kSrcView := key.View(ctx, rowSize*src, kHeadDim*numKVHeads*length)
|
||||
kDstView := key.View(ctx, rowSize*dst, kHeadDim*numKVHeads*length)
|
||||
|
||||
value := c.values[i]
|
||||
var vSrcView, vDstView ml.Tensor
|
||||
@ -284,14 +285,14 @@ func (c *Causal) moveCells(ctx ml.Context, src, dst, len int) {
|
||||
vHeadDim := value.Dim(1)
|
||||
elemSize := value.Stride(0)
|
||||
|
||||
vSrcView = value.View(ctx, elemSize*src, len, int(c.Capacity)*elemSize, vHeadDim*numKVHeads)
|
||||
vDstView = value.View(ctx, elemSize*dst, len, int(c.Capacity)*elemSize, vHeadDim*numKVHeads)
|
||||
vSrcView = value.View(ctx, elemSize*src, length, len(c.cells)*elemSize, vHeadDim*numKVHeads)
|
||||
vDstView = value.View(ctx, elemSize*dst, length, len(c.cells)*elemSize, vHeadDim*numKVHeads)
|
||||
} else {
|
||||
vHeadDim := value.Dim(0)
|
||||
rowSize := value.Stride(2)
|
||||
|
||||
vSrcView = value.View(ctx, rowSize*src, vHeadDim*numKVHeads*len)
|
||||
vDstView = value.View(ctx, rowSize*dst, vHeadDim*numKVHeads*len)
|
||||
vSrcView = value.View(ctx, rowSize*src, vHeadDim*numKVHeads*length)
|
||||
vDstView = value.View(ctx, rowSize*dst, vHeadDim*numKVHeads*length)
|
||||
}
|
||||
|
||||
ctx.Forward(
|
||||
@ -480,14 +481,14 @@ func (c *Causal) Put(ctx ml.Context, key, value ml.Tensor) {
|
||||
}
|
||||
|
||||
if _, ok := c.keys[c.curLayer]; !ok {
|
||||
c.keys[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, kHeadDim, numKVHeads, int(c.Capacity))
|
||||
c.keys[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, kHeadDim, numKVHeads, len(c.cells))
|
||||
}
|
||||
|
||||
if _, ok := c.values[c.curLayer]; !ok {
|
||||
if c.config.PermutedV {
|
||||
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, int(c.Capacity), vHeadDim, numKVHeads)
|
||||
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, len(c.cells), vHeadDim, numKVHeads)
|
||||
} else {
|
||||
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, vHeadDim, numKVHeads, int(c.Capacity))
|
||||
c.values[c.curLayer] = c.ctxs[c.curLayer].Zeros(c.DType, vHeadDim, numKVHeads, len(c.cells))
|
||||
}
|
||||
}
|
||||
|
||||
@ -498,7 +499,7 @@ func (c *Causal) Put(ctx ml.Context, key, value ml.Tensor) {
|
||||
elemSize := c.values[c.curLayer].Stride(0)
|
||||
|
||||
value = value.Permute(ctx, 1, 2, 0, 3)
|
||||
ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, elemSize*c.curLoc, batchSize, int(c.Capacity)*elemSize, vHeadDim*numKVHeads)))
|
||||
ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, elemSize*c.curLoc, batchSize, len(c.cells)*elemSize, vHeadDim*numKVHeads)))
|
||||
} else {
|
||||
rowSize := c.values[c.curLayer].Stride(2)
|
||||
|
||||
|
@ -25,7 +25,7 @@ func TestStore(t *testing.T) {
|
||||
cache := NewCausalCache(nil)
|
||||
defer cache.Close()
|
||||
|
||||
cache.Init(backend, ml.DTypeF16, 16)
|
||||
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
|
||||
|
||||
tests := []testCase{
|
||||
{
|
||||
@ -58,7 +58,7 @@ func TestSWA(t *testing.T) {
|
||||
cache := NewSWACache(1, nil)
|
||||
defer cache.Close()
|
||||
|
||||
cache.Init(backend, ml.DTypeF32, 16)
|
||||
cache.Init(backend, ml.DTypeF32, 1, 16, 16)
|
||||
|
||||
tests := []testCase{
|
||||
{
|
||||
@ -81,7 +81,7 @@ func TestSequences(t *testing.T) {
|
||||
cache := NewCausalCache(nil)
|
||||
defer cache.Close()
|
||||
|
||||
cache.Init(backend, ml.DTypeF16, 16)
|
||||
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
|
||||
|
||||
tests := []testCase{
|
||||
{
|
||||
@ -116,7 +116,7 @@ func TestRemove(t *testing.T) {
|
||||
})
|
||||
defer cache.Close()
|
||||
|
||||
cache.Init(backend, ml.DTypeF16, 16)
|
||||
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
|
||||
|
||||
tests := []testCase{
|
||||
{
|
||||
@ -181,7 +181,7 @@ func TestDefrag(t *testing.T) {
|
||||
})
|
||||
defer cache.Close()
|
||||
|
||||
cache.Init(backend, ml.DTypeF16, 16)
|
||||
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
|
||||
|
||||
tests := []testCase{
|
||||
{
|
||||
@ -229,7 +229,7 @@ func TestCopy(t *testing.T) {
|
||||
cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) { return key, nil })
|
||||
defer cache.Close()
|
||||
|
||||
cache.Init(backend, ml.DTypeF16, 16)
|
||||
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
|
||||
|
||||
tests := []testCase{
|
||||
{
|
||||
|
@ -49,7 +49,7 @@ func NewEncoderCache() *EncoderCache {
|
||||
}
|
||||
}
|
||||
|
||||
func (c *EncoderCache) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
|
||||
func (c *EncoderCache) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
|
||||
if c.config == nil {
|
||||
var config ml.CacheConfig
|
||||
if cc, ok := backend.(ml.BackendCacheConfig); ok {
|
||||
@ -58,6 +58,10 @@ func (c *EncoderCache) Init(backend ml.Backend, dtype ml.DType, capacity int32)
|
||||
c.config = &config
|
||||
}
|
||||
|
||||
if maxSequences > 1 {
|
||||
panic(fmt.Errorf("encoder cache does not support multiple sequences; requested: %v", maxSequences))
|
||||
}
|
||||
|
||||
if c.config.CachePadding != 0 && c.config.CachePadding != 1 {
|
||||
panic(fmt.Errorf("encoder cache is unable to enforce requested CachePadding (%v)", c.config.CachePadding))
|
||||
}
|
||||
|
@ -23,9 +23,9 @@ func NewWrapperCache(caches ...Cache) *WrapperCache {
|
||||
}
|
||||
}
|
||||
|
||||
func (c *WrapperCache) Init(backend ml.Backend, dtype ml.DType, capacity int32) {
|
||||
func (c *WrapperCache) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity, maxBatch int) {
|
||||
for _, cache := range c.caches {
|
||||
cache.Init(backend, dtype, capacity)
|
||||
cache.Init(backend, dtype, maxSequences, capacity, maxBatch)
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -31,8 +31,10 @@ type InputCache struct {
|
||||
cache kvcache.Cache
|
||||
}
|
||||
|
||||
func NewInputCache(model model.Model, kvCacheType string, kvSize int32, numSlots int, multiUserCache bool) (*InputCache, error) {
|
||||
if kvSize/int32(numSlots) < 1 {
|
||||
func NewInputCache(model model.Model, kvCacheType string, kvSize int32, numSlots int, batchSize int, multiUserCache bool) (*InputCache, error) {
|
||||
numCtx := kvSize / int32(numSlots)
|
||||
|
||||
if numCtx < 1 {
|
||||
return nil, fmt.Errorf("must have at least one kv cache entry per parallel sequence (kv: %v parallel: %v)", kvSize, numSlots)
|
||||
}
|
||||
|
||||
@ -44,11 +46,11 @@ func NewInputCache(model model.Model, kvCacheType string, kvSize int32, numSlots
|
||||
|
||||
cache := model.Config().Cache
|
||||
if cache != nil {
|
||||
cache.Init(model.Backend(), kvCacheTypeFromStr(kvCacheType), kvSize)
|
||||
cache.Init(model.Backend(), kvCacheTypeFromStr(kvCacheType), numSlots, int(numCtx), batchSize)
|
||||
}
|
||||
|
||||
return &InputCache{
|
||||
numCtx: kvSize / int32(numSlots),
|
||||
numCtx: numCtx,
|
||||
enabled: cache != nil,
|
||||
slots: slots,
|
||||
multiUserCache: multiUserCache,
|
||||
|
@ -699,7 +699,7 @@ func (s *Server) loadModel(
|
||||
panic("loras are not yet implemented")
|
||||
}
|
||||
|
||||
s.cache, err = NewInputCache(s.model, kvCacheType, int32(kvSize), parallel, multiUserCache)
|
||||
s.cache, err = NewInputCache(s.model, kvCacheType, int32(kvSize), parallel, s.batchSize, multiUserCache)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user