embedding gemma model (#12181)

* ollama: add embeddings
This commit is contained in:
Michael Yang
2025-09-04 09:09:07 -07:00
committed by GitHub
parent b3e6120736
commit 5994e8e8fd
10 changed files with 175 additions and 27 deletions

View File

@@ -201,12 +201,11 @@ func (bpe BytePairEncoding) Encode(s string, addSpecial bool) ([]int32, error) {
}
}
logutil.Trace("encoded", "string", s, "ids", ids)
if addSpecial && len(ids) > 0 {
ids = bpe.vocab.addSpecials(ids)
}
logutil.Trace("encoded", "string", s, "ids", ids)
return ids, nil
}

View File

@@ -5,6 +5,7 @@ import (
"fmt"
_ "image/jpeg"
_ "image/png"
"math"
"os"
"reflect"
"strconv"
@@ -103,6 +104,10 @@ func New(modelPath string, params ml.BackendParams) (Model, error) {
}
arch := b.Config().Architecture()
if b.Config().Uint("pooling_type", math.MaxUint32) != math.MaxUint32 {
arch = arch + "_embed"
}
f, ok := models[arch]
if !ok {
return nil, fmt.Errorf("unsupported model architecture %q", arch)

View File

@@ -0,0 +1,73 @@
package gemma3
import (
"errors"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type embedModel struct {
model.Base
model.SentencePieceModel
*TextModel
PoolingType uint32
Dense [2]*nn.Linear `gguf:"dense"`
}
func (m *embedModel) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
batch.Outputs = batch.Positions // return all positions
hiddenStates := m.TextModel.Forward(ctx, batch, m.Cache)
switch m.PoolingType {
case 0: // None
case 1: // Mean
hiddenStates = hiddenStates.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx).Mean(ctx)
hiddenStates = hiddenStates.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
default:
return nil, errors.New("unsupported pooling type")
}
for _, dense := range m.Dense {
hiddenStates = dense.Forward(ctx, hiddenStates)
}
return hiddenStates, nil
}
func newEmbedModel(c fs.Config) (model.Model, error) {
m := &embedModel{
SentencePieceModel: model.NewSentencePieceModel(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{
int32(c.Uint("tokenizer.ggml.eos_token_id")),
int32(c.Uint("tokenizer.ggml.eot_token_id", 106)),
},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
),
TextModel: newTextModel(c),
PoolingType: c.Uint("pooling_type", 0),
}
m.Cache = kvcache.NewWrapperCache(
kvcache.NewSWACache(int32(c.Uint("attention.sliding_window")), m.Shift),
kvcache.NewCausalCache(m.Shift),
)
return m, nil
}

View File

@@ -141,12 +141,11 @@ func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
hiddenStates := m.TextModel.Forward(ctx, batch, m.Cache)
return m.Output.Forward(ctx, hiddenStates), nil
}
func init() {
model.Register("gemma3", New)
model.Register("gemma3_embed", newEmbedModel)
}

View File

@@ -159,8 +159,11 @@ func (l *TextLayer) Forward(ctx ml.Context, layer int, hiddenState, positionIDs,
return hiddenState.Add(ctx, residual)
}
func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, batch input.Batch, cache kvcache.Cache) ml.Tensor {
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
func (m *TextModel) Forward(ctx ml.Context, batch input.Batch, cache kvcache.Cache) ml.Tensor {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.TextConfig.hiddenSize)))
// set image embeddings
@@ -198,5 +201,5 @@ func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor
}
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
return m.Output.Forward(ctx, hiddenState)
return hiddenState
}

View File

@@ -181,12 +181,11 @@ func (spm SentencePieceModel) Encode(s string, addSpecial bool) ([]int32, error)
}
}
logutil.Trace("encoded", "string", s, "ids", ids)
if addSpecial && len(ids) > 0 {
ids = spm.vocab.addSpecials(ids)
}
logutil.Trace("encoded", "string", s, "ids", ids)
return ids, nil
}

View File

@@ -49,7 +49,7 @@ func (v *Vocabulary) addSpecials(ids []int32) []int32 {
slog.Warn("adding bos token to prompt which already has it", "id", v.BOS)
}
slog.Debug("adding bos token to prompt", "id", v.BOS)
slog.Debug("adding bos token to prompt", "id", v.BOS[0])
ids = append([]int32{v.BOS[0]}, ids...)
}
@@ -58,7 +58,7 @@ func (v *Vocabulary) addSpecials(ids []int32) []int32 {
slog.Warn("adding eos token to prompt which already has it", "id", v.EOS)
}
slog.Debug("adding eos token to prompt", "id", v.EOS)
slog.Debug("adding eos token to prompt", "id", v.EOS[0])
ids = append(ids, v.EOS[0])
}

View File

@@ -95,7 +95,7 @@ type InputCacheSlot struct {
lastUsed time.Time
}
func (c *InputCache) LoadCacheSlot(prompt []*input.Input) (*InputCacheSlot, []*input.Input, error) {
func (c *InputCache) LoadCacheSlot(prompt []*input.Input, cachePrompt bool) (*InputCacheSlot, []*input.Input, error) {
var slot *InputCacheSlot
var numPast int32
var err error
@@ -113,6 +113,10 @@ func (c *InputCache) LoadCacheSlot(prompt []*input.Input) (*InputCacheSlot, []*i
return nil, nil, err
}
if !cachePrompt {
numPast = 0
}
slot.InUse = true
slot.lastUsed = time.Now()

View File

@@ -393,7 +393,7 @@ func TestLoadCacheSlot(t *testing.T) {
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
slot, remainingPrompt, err := tt.cache.LoadCacheSlot(tt.prompt)
slot, remainingPrompt, err := tt.cache.LoadCacheSlot(tt.prompt, true)
// Check error state
if (err != nil) != tt.wantErr {

View File

@@ -11,6 +11,7 @@ import (
"image"
"log"
"log/slog"
"math"
"net"
"net/http"
"os"
@@ -405,6 +406,8 @@ func (s *Server) removeSequence(seqIndex int, reason llm.DoneReason) {
func (s *Server) run(ctx context.Context) {
s.ready.Wait()
supportsAsync := s.model.Backend().Config().Uint("pooling_type", math.MaxUint32) == math.MaxUint32
var activeBatch batchState
for {
select {
@@ -418,7 +421,12 @@ func (s *Server) run(ctx context.Context) {
if err != nil {
panic(err)
}
go s.computeBatch(activeBatch)
if supportsAsync {
go s.computeBatch(activeBatch)
} else {
s.computeBatch(activeBatch)
}
}
}
}
@@ -670,7 +678,8 @@ func (s *Server) computeBatch(activeBatch batchState) {
activeBatch.computeStartedCh <- struct{}{}
},
activeBatch.modelOutput)
logits := activeBatch.modelOutput.Floats()
outputs := activeBatch.modelOutput.Floats()
logutil.Trace("computeBatch: logits ready", "batchID", activeBatch.id)
@@ -689,16 +698,15 @@ func (s *Server) computeBatch(activeBatch batchState) {
// if done processing the prompt, generate an embedding and return
if seq.embeddingOnly {
// TODO(jessegross): Embedding support
slog.Warn("generation of embedding outputs not yet supported", "id", activeBatch.id, "seqIdx", i)
seq.embedding <- outputs
s.removeSequence(i, llm.DoneReasonStop)
continue
}
// sample a token
vocabSize := len(logits) / len(activeBatch.batch.Outputs)
logutil.Trace("computeBatch: vocab details", "batchID", activeBatch.id, "seqIdx", i, "len(logits)", len(logits), "len(activeBatch.batch.Outputs)", len(activeBatch.batch.Outputs), "vocabSize", vocabSize, "iBatches", iBatches)
token, err := seq.sampler.Sample(logits[iBatches[i]*vocabSize : (iBatches[i]+1)*vocabSize])
vocabSize := len(outputs) / len(activeBatch.batch.Outputs)
logutil.Trace("computeBatch: vocab details", "batchID", activeBatch.id, "seqIdx", i, "len(logits)", len(outputs), "len(activeBatch.batch.Outputs)", len(activeBatch.batch.Outputs), "vocabSize", vocabSize, "iBatches", iBatches)
token, err := seq.sampler.Sample(outputs[iBatches[i]*vocabSize : (iBatches[i]+1)*vocabSize])
if err != nil {
s.hardErrCh <- fmt.Errorf("failed to sample token: %w", err)
return
@@ -834,7 +842,7 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
found := false
for i, sq := range s.seqs {
if sq == nil {
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs)
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, true)
if err != nil {
s.mu.Unlock()
s.seqsSem.Release(1)
@@ -890,6 +898,67 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
}
}
func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
if s.model.Backend().Config().Uint("pooling_type", math.MaxUint32) == math.MaxUint32 {
http.Error(w, "this model does not support embeddings", http.StatusNotImplemented)
return
}
var req llm.EmbeddingRequest
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
http.Error(w, fmt.Sprintf("bad request: %s", err), http.StatusBadRequest)
return
}
w.Header().Set("Content-Type", "application/json")
seq, err := s.NewSequence(req.Content, nil, NewSequenceParams{embedding: true})
if err != nil {
http.Error(w, fmt.Sprintf("failed to create new sequence: %v", err), http.StatusInternalServerError)
return
}
if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
if errors.Is(err, context.Canceled) {
slog.Info("aborting embedding request due to client closing the connection")
} else {
http.Error(w, fmt.Sprintf("failed to acquire semaphore: %v", err), http.StatusInternalServerError)
}
return
}
s.mu.Lock()
found := false
for i, sq := range s.seqs {
if sq == nil {
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, false)
if err != nil {
s.mu.Unlock()
s.seqsSem.Release(1)
http.Error(w, fmt.Sprintf("failed to load cache: %v", err), http.StatusInternalServerError)
return
}
s.seqs[i] = seq
s.cond.Signal()
found = true
break
}
}
s.mu.Unlock()
if !found {
s.seqsSem.Release(1)
http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
return
}
if err := json.NewEncoder(w).Encode(&llm.EmbeddingResponse{
Embedding: <-seq.embedding,
}); err != nil {
http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
}
}
func (s *Server) health(w http.ResponseWriter, r *http.Request) {
w.Header().Set("Content-Type", "application/json")
if err := json.NewEncoder(w).Encode(&llm.ServerStatusResponse{
@@ -1206,10 +1275,7 @@ func Execute(args []string) error {
mux := http.NewServeMux()
// TODO: support embeddings
mux.HandleFunc("POST /load", server.load)
mux.HandleFunc("POST /embedding", func(w http.ResponseWriter, r *http.Request) {
http.Error(w, "this model does not support embeddings", http.StatusNotImplemented)
})
mux.HandleFunc("POST /embedding", server.embeddings)
mux.HandleFunc("POST /completion", server.completion)
mux.HandleFunc("GET /health", server.health)