mirror of
https://github.com/ollama/ollama.git
synced 2025-09-18 19:21:33 +02:00
@@ -201,12 +201,11 @@ func (bpe BytePairEncoding) Encode(s string, addSpecial bool) ([]int32, error) {
|
||||
}
|
||||
}
|
||||
|
||||
logutil.Trace("encoded", "string", s, "ids", ids)
|
||||
|
||||
if addSpecial && len(ids) > 0 {
|
||||
ids = bpe.vocab.addSpecials(ids)
|
||||
}
|
||||
|
||||
logutil.Trace("encoded", "string", s, "ids", ids)
|
||||
return ids, nil
|
||||
}
|
||||
|
||||
|
@@ -5,6 +5,7 @@ import (
|
||||
"fmt"
|
||||
_ "image/jpeg"
|
||||
_ "image/png"
|
||||
"math"
|
||||
"os"
|
||||
"reflect"
|
||||
"strconv"
|
||||
@@ -103,6 +104,10 @@ func New(modelPath string, params ml.BackendParams) (Model, error) {
|
||||
}
|
||||
|
||||
arch := b.Config().Architecture()
|
||||
if b.Config().Uint("pooling_type", math.MaxUint32) != math.MaxUint32 {
|
||||
arch = arch + "_embed"
|
||||
}
|
||||
|
||||
f, ok := models[arch]
|
||||
if !ok {
|
||||
return nil, fmt.Errorf("unsupported model architecture %q", arch)
|
||||
|
73
model/models/gemma3/embed.go
Normal file
73
model/models/gemma3/embed.go
Normal file
@@ -0,0 +1,73 @@
|
||||
package gemma3
|
||||
|
||||
import (
|
||||
"errors"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/model"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
type embedModel struct {
|
||||
model.Base
|
||||
model.SentencePieceModel
|
||||
|
||||
*TextModel
|
||||
PoolingType uint32
|
||||
|
||||
Dense [2]*nn.Linear `gguf:"dense"`
|
||||
}
|
||||
|
||||
func (m *embedModel) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||
batch.Outputs = batch.Positions // return all positions
|
||||
hiddenStates := m.TextModel.Forward(ctx, batch, m.Cache)
|
||||
|
||||
switch m.PoolingType {
|
||||
case 0: // None
|
||||
case 1: // Mean
|
||||
hiddenStates = hiddenStates.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx).Mean(ctx)
|
||||
hiddenStates = hiddenStates.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
|
||||
default:
|
||||
return nil, errors.New("unsupported pooling type")
|
||||
}
|
||||
|
||||
for _, dense := range m.Dense {
|
||||
hiddenStates = dense.Forward(ctx, hiddenStates)
|
||||
}
|
||||
|
||||
return hiddenStates, nil
|
||||
}
|
||||
|
||||
func newEmbedModel(c fs.Config) (model.Model, error) {
|
||||
m := &embedModel{
|
||||
SentencePieceModel: model.NewSentencePieceModel(
|
||||
&model.Vocabulary{
|
||||
Values: c.Strings("tokenizer.ggml.tokens"),
|
||||
Scores: c.Floats("tokenizer.ggml.scores"),
|
||||
Types: c.Ints("tokenizer.ggml.token_type"),
|
||||
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
|
||||
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
|
||||
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
|
||||
EOS: append(
|
||||
[]int32{
|
||||
int32(c.Uint("tokenizer.ggml.eos_token_id")),
|
||||
int32(c.Uint("tokenizer.ggml.eot_token_id", 106)),
|
||||
},
|
||||
c.Ints("tokenizer.ggml.eos_token_ids")...,
|
||||
),
|
||||
},
|
||||
),
|
||||
TextModel: newTextModel(c),
|
||||
PoolingType: c.Uint("pooling_type", 0),
|
||||
}
|
||||
|
||||
m.Cache = kvcache.NewWrapperCache(
|
||||
kvcache.NewSWACache(int32(c.Uint("attention.sliding_window")), m.Shift),
|
||||
kvcache.NewCausalCache(m.Shift),
|
||||
)
|
||||
|
||||
return m, nil
|
||||
}
|
@@ -141,12 +141,11 @@ func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
|
||||
}
|
||||
|
||||
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
|
||||
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
|
||||
|
||||
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
|
||||
hiddenStates := m.TextModel.Forward(ctx, batch, m.Cache)
|
||||
return m.Output.Forward(ctx, hiddenStates), nil
|
||||
}
|
||||
|
||||
func init() {
|
||||
model.Register("gemma3", New)
|
||||
model.Register("gemma3_embed", newEmbedModel)
|
||||
}
|
||||
|
@@ -159,8 +159,11 @@ func (l *TextLayer) Forward(ctx ml.Context, layer int, hiddenState, positionIDs,
|
||||
return hiddenState.Add(ctx, residual)
|
||||
}
|
||||
|
||||
func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, batch input.Batch, cache kvcache.Cache) ml.Tensor {
|
||||
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
|
||||
func (m *TextModel) Forward(ctx ml.Context, batch input.Batch, cache kvcache.Cache) ml.Tensor {
|
||||
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
|
||||
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
|
||||
|
||||
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
|
||||
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.TextConfig.hiddenSize)))
|
||||
|
||||
// set image embeddings
|
||||
@@ -198,5 +201,5 @@ func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor
|
||||
}
|
||||
|
||||
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
|
||||
return m.Output.Forward(ctx, hiddenState)
|
||||
return hiddenState
|
||||
}
|
||||
|
@@ -181,12 +181,11 @@ func (spm SentencePieceModel) Encode(s string, addSpecial bool) ([]int32, error)
|
||||
}
|
||||
}
|
||||
|
||||
logutil.Trace("encoded", "string", s, "ids", ids)
|
||||
|
||||
if addSpecial && len(ids) > 0 {
|
||||
ids = spm.vocab.addSpecials(ids)
|
||||
}
|
||||
|
||||
logutil.Trace("encoded", "string", s, "ids", ids)
|
||||
return ids, nil
|
||||
}
|
||||
|
||||
|
@@ -49,7 +49,7 @@ func (v *Vocabulary) addSpecials(ids []int32) []int32 {
|
||||
slog.Warn("adding bos token to prompt which already has it", "id", v.BOS)
|
||||
}
|
||||
|
||||
slog.Debug("adding bos token to prompt", "id", v.BOS)
|
||||
slog.Debug("adding bos token to prompt", "id", v.BOS[0])
|
||||
ids = append([]int32{v.BOS[0]}, ids...)
|
||||
}
|
||||
|
||||
@@ -58,7 +58,7 @@ func (v *Vocabulary) addSpecials(ids []int32) []int32 {
|
||||
slog.Warn("adding eos token to prompt which already has it", "id", v.EOS)
|
||||
}
|
||||
|
||||
slog.Debug("adding eos token to prompt", "id", v.EOS)
|
||||
slog.Debug("adding eos token to prompt", "id", v.EOS[0])
|
||||
ids = append(ids, v.EOS[0])
|
||||
}
|
||||
|
||||
|
@@ -95,7 +95,7 @@ type InputCacheSlot struct {
|
||||
lastUsed time.Time
|
||||
}
|
||||
|
||||
func (c *InputCache) LoadCacheSlot(prompt []*input.Input) (*InputCacheSlot, []*input.Input, error) {
|
||||
func (c *InputCache) LoadCacheSlot(prompt []*input.Input, cachePrompt bool) (*InputCacheSlot, []*input.Input, error) {
|
||||
var slot *InputCacheSlot
|
||||
var numPast int32
|
||||
var err error
|
||||
@@ -113,6 +113,10 @@ func (c *InputCache) LoadCacheSlot(prompt []*input.Input) (*InputCacheSlot, []*i
|
||||
return nil, nil, err
|
||||
}
|
||||
|
||||
if !cachePrompt {
|
||||
numPast = 0
|
||||
}
|
||||
|
||||
slot.InUse = true
|
||||
slot.lastUsed = time.Now()
|
||||
|
||||
|
@@ -393,7 +393,7 @@ func TestLoadCacheSlot(t *testing.T) {
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
slot, remainingPrompt, err := tt.cache.LoadCacheSlot(tt.prompt)
|
||||
slot, remainingPrompt, err := tt.cache.LoadCacheSlot(tt.prompt, true)
|
||||
|
||||
// Check error state
|
||||
if (err != nil) != tt.wantErr {
|
||||
|
@@ -11,6 +11,7 @@ import (
|
||||
"image"
|
||||
"log"
|
||||
"log/slog"
|
||||
"math"
|
||||
"net"
|
||||
"net/http"
|
||||
"os"
|
||||
@@ -405,6 +406,8 @@ func (s *Server) removeSequence(seqIndex int, reason llm.DoneReason) {
|
||||
func (s *Server) run(ctx context.Context) {
|
||||
s.ready.Wait()
|
||||
|
||||
supportsAsync := s.model.Backend().Config().Uint("pooling_type", math.MaxUint32) == math.MaxUint32
|
||||
|
||||
var activeBatch batchState
|
||||
for {
|
||||
select {
|
||||
@@ -418,7 +421,12 @@ func (s *Server) run(ctx context.Context) {
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
go s.computeBatch(activeBatch)
|
||||
|
||||
if supportsAsync {
|
||||
go s.computeBatch(activeBatch)
|
||||
} else {
|
||||
s.computeBatch(activeBatch)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -670,7 +678,8 @@ func (s *Server) computeBatch(activeBatch batchState) {
|
||||
activeBatch.computeStartedCh <- struct{}{}
|
||||
},
|
||||
activeBatch.modelOutput)
|
||||
logits := activeBatch.modelOutput.Floats()
|
||||
|
||||
outputs := activeBatch.modelOutput.Floats()
|
||||
|
||||
logutil.Trace("computeBatch: logits ready", "batchID", activeBatch.id)
|
||||
|
||||
@@ -689,16 +698,15 @@ func (s *Server) computeBatch(activeBatch batchState) {
|
||||
|
||||
// if done processing the prompt, generate an embedding and return
|
||||
if seq.embeddingOnly {
|
||||
// TODO(jessegross): Embedding support
|
||||
slog.Warn("generation of embedding outputs not yet supported", "id", activeBatch.id, "seqIdx", i)
|
||||
seq.embedding <- outputs
|
||||
s.removeSequence(i, llm.DoneReasonStop)
|
||||
continue
|
||||
}
|
||||
|
||||
// sample a token
|
||||
vocabSize := len(logits) / len(activeBatch.batch.Outputs)
|
||||
logutil.Trace("computeBatch: vocab details", "batchID", activeBatch.id, "seqIdx", i, "len(logits)", len(logits), "len(activeBatch.batch.Outputs)", len(activeBatch.batch.Outputs), "vocabSize", vocabSize, "iBatches", iBatches)
|
||||
token, err := seq.sampler.Sample(logits[iBatches[i]*vocabSize : (iBatches[i]+1)*vocabSize])
|
||||
vocabSize := len(outputs) / len(activeBatch.batch.Outputs)
|
||||
logutil.Trace("computeBatch: vocab details", "batchID", activeBatch.id, "seqIdx", i, "len(logits)", len(outputs), "len(activeBatch.batch.Outputs)", len(activeBatch.batch.Outputs), "vocabSize", vocabSize, "iBatches", iBatches)
|
||||
token, err := seq.sampler.Sample(outputs[iBatches[i]*vocabSize : (iBatches[i]+1)*vocabSize])
|
||||
if err != nil {
|
||||
s.hardErrCh <- fmt.Errorf("failed to sample token: %w", err)
|
||||
return
|
||||
@@ -834,7 +842,7 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
|
||||
found := false
|
||||
for i, sq := range s.seqs {
|
||||
if sq == nil {
|
||||
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs)
|
||||
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, true)
|
||||
if err != nil {
|
||||
s.mu.Unlock()
|
||||
s.seqsSem.Release(1)
|
||||
@@ -890,6 +898,67 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
|
||||
}
|
||||
}
|
||||
|
||||
func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
|
||||
if s.model.Backend().Config().Uint("pooling_type", math.MaxUint32) == math.MaxUint32 {
|
||||
http.Error(w, "this model does not support embeddings", http.StatusNotImplemented)
|
||||
return
|
||||
}
|
||||
|
||||
var req llm.EmbeddingRequest
|
||||
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
|
||||
http.Error(w, fmt.Sprintf("bad request: %s", err), http.StatusBadRequest)
|
||||
return
|
||||
}
|
||||
|
||||
w.Header().Set("Content-Type", "application/json")
|
||||
seq, err := s.NewSequence(req.Content, nil, NewSequenceParams{embedding: true})
|
||||
if err != nil {
|
||||
http.Error(w, fmt.Sprintf("failed to create new sequence: %v", err), http.StatusInternalServerError)
|
||||
return
|
||||
}
|
||||
|
||||
if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
|
||||
if errors.Is(err, context.Canceled) {
|
||||
slog.Info("aborting embedding request due to client closing the connection")
|
||||
} else {
|
||||
http.Error(w, fmt.Sprintf("failed to acquire semaphore: %v", err), http.StatusInternalServerError)
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
s.mu.Lock()
|
||||
found := false
|
||||
for i, sq := range s.seqs {
|
||||
if sq == nil {
|
||||
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, false)
|
||||
if err != nil {
|
||||
s.mu.Unlock()
|
||||
s.seqsSem.Release(1)
|
||||
http.Error(w, fmt.Sprintf("failed to load cache: %v", err), http.StatusInternalServerError)
|
||||
return
|
||||
}
|
||||
|
||||
s.seqs[i] = seq
|
||||
s.cond.Signal()
|
||||
found = true
|
||||
break
|
||||
}
|
||||
}
|
||||
s.mu.Unlock()
|
||||
|
||||
if !found {
|
||||
s.seqsSem.Release(1)
|
||||
http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
|
||||
return
|
||||
}
|
||||
|
||||
if err := json.NewEncoder(w).Encode(&llm.EmbeddingResponse{
|
||||
Embedding: <-seq.embedding,
|
||||
}); err != nil {
|
||||
http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
|
||||
}
|
||||
}
|
||||
|
||||
func (s *Server) health(w http.ResponseWriter, r *http.Request) {
|
||||
w.Header().Set("Content-Type", "application/json")
|
||||
if err := json.NewEncoder(w).Encode(&llm.ServerStatusResponse{
|
||||
@@ -1206,10 +1275,7 @@ func Execute(args []string) error {
|
||||
mux := http.NewServeMux()
|
||||
// TODO: support embeddings
|
||||
mux.HandleFunc("POST /load", server.load)
|
||||
mux.HandleFunc("POST /embedding", func(w http.ResponseWriter, r *http.Request) {
|
||||
http.Error(w, "this model does not support embeddings", http.StatusNotImplemented)
|
||||
})
|
||||
|
||||
mux.HandleFunc("POST /embedding", server.embeddings)
|
||||
mux.HandleFunc("POST /completion", server.completion)
|
||||
mux.HandleFunc("GET /health", server.health)
|
||||
|
||||
|
Reference in New Issue
Block a user