mirror of
https://github.com/ollama/ollama.git
synced 2025-03-18 05:41:43 +01:00
sample: add numerical stability to temperature/softmax transform (#9631)
This commit is contained in:
parent
fe776293f7
commit
7e34f4fbfa
@ -90,8 +90,9 @@ func (s *Sampler) sample(tokens []token) (token, error) {
|
||||
sortLogits(tokens)
|
||||
}
|
||||
|
||||
// token logit values are updated to probabilities
|
||||
tokens = temperature(tokens, s.temperature)
|
||||
tokens = softmax(tokens)
|
||||
|
||||
tokens = topP(tokens, s.topP)
|
||||
tokens = minP(tokens, s.minP)
|
||||
|
||||
|
@ -5,13 +5,25 @@ import (
|
||||
"slices"
|
||||
)
|
||||
|
||||
func softmax(ts []token) []token {
|
||||
// temperature applies scaling and softmax to the logits
|
||||
func temperature(ts []token, temp float32) []token {
|
||||
// Find max logit for numerical stability
|
||||
maxLogit := float32(math.Inf(-1))
|
||||
for _, t := range ts {
|
||||
if t.value > maxLogit {
|
||||
maxLogit = t.value
|
||||
}
|
||||
}
|
||||
|
||||
// Apply temperature and compute exp(x - max)
|
||||
temp = max(temp, 1e-7)
|
||||
var sum float32
|
||||
for i, v := range ts {
|
||||
ts[i].value = float32(math.Exp(float64(v.value)))
|
||||
ts[i].value = float32(math.Exp(float64((v.value - maxLogit) / temp)))
|
||||
sum += ts[i].value
|
||||
}
|
||||
|
||||
// Normalize
|
||||
for i := range ts {
|
||||
ts[i].value /= sum
|
||||
}
|
||||
@ -19,27 +31,6 @@ func softmax(ts []token) []token {
|
||||
return ts
|
||||
}
|
||||
|
||||
func temperature(ti []token, t float32) []token {
|
||||
if t == 1 {
|
||||
return ti
|
||||
}
|
||||
|
||||
temp := max(t, 1e-7)
|
||||
maxLogit := float32(math.Inf(-1))
|
||||
for _, token := range ti {
|
||||
if token.value > maxLogit {
|
||||
maxLogit = token.value
|
||||
}
|
||||
}
|
||||
|
||||
// subtracting max logit to avoid under/overflow
|
||||
for i := range ti {
|
||||
ti[i].value = (ti[i].value - maxLogit) / temp
|
||||
}
|
||||
|
||||
return ti
|
||||
}
|
||||
|
||||
// siftDown maintains a min-heap property by recursively moving larger elements down the heap.
|
||||
//
|
||||
// The heap is represented as an array where for any node at index i:
|
||||
@ -145,7 +136,8 @@ func minP(ts []token, p float32) []token {
|
||||
}
|
||||
|
||||
// TODO(parthsareen): possibly replace with simpler implementation https://github.com/ollama/ollama/issues/9584
|
||||
// Conting sort implementation to sort tokens by logits
|
||||
// sortLogits sorts implementation to sort tokens by logits using counting sort
|
||||
// counting sort is faster than built-in sort for this use case
|
||||
func sortLogits(tokens []token) {
|
||||
if len(tokens) <= 1 {
|
||||
return
|
||||
|
@ -32,17 +32,9 @@ func compareLogits(t *testing.T, name string, want []float64, got []token) {
|
||||
}
|
||||
}
|
||||
|
||||
func TestTemperature(t *testing.T) {
|
||||
input := []float64{2, -1, 4, -3, 1, -2, 0}
|
||||
want := []float64{-4, -10, 0, -14, -6, -12, -8} // (logit - max logit) / temp
|
||||
|
||||
func TestTemperatureAndSoftmax(t *testing.T) {
|
||||
input := []float64{1, 4, -2, 0}
|
||||
got := temperature(toTokens(input), 0.5)
|
||||
compareLogits(t, "Temperature", want, got)
|
||||
}
|
||||
|
||||
func TestSoftmax(t *testing.T) {
|
||||
input := []float64{-3, -2, -1, 0, 1, 2, 4}
|
||||
got := softmax(toTokens(input))
|
||||
|
||||
// Check probabilities sum to 1
|
||||
var sum float32
|
||||
@ -53,11 +45,14 @@ func TestSoftmax(t *testing.T) {
|
||||
t.Errorf("probabilities don't sum to 1: got %f", sum)
|
||||
}
|
||||
|
||||
// Check relative ordering is preserved
|
||||
for i := 1; i < len(got); i++ {
|
||||
if got[i].value < got[i-1].value {
|
||||
t.Errorf("probability ordering not preserved at index %d", i)
|
||||
}
|
||||
got = temperature(toTokens(input), 1)
|
||||
// Check probabilities sum to 1
|
||||
sum = 0.0
|
||||
for _, token := range got {
|
||||
sum += token.value
|
||||
}
|
||||
if math.Abs(float64(sum)-1.0) > 1e-6 {
|
||||
t.Errorf("probabilities don't sum to 1: got %f", sum)
|
||||
}
|
||||
}
|
||||
|
||||
@ -84,7 +79,6 @@ func TestTopP(t *testing.T) {
|
||||
|
||||
// First apply temperature and softmax to get probabilities
|
||||
tokens = temperature(tokens, 1)
|
||||
tokens = softmax(tokens)
|
||||
sortLogits(tokens)
|
||||
|
||||
// Then apply topP
|
||||
@ -103,7 +97,6 @@ func TestMinP(t *testing.T) {
|
||||
|
||||
// First apply temperature and softmax
|
||||
tokens = temperature(tokens, 1)
|
||||
tokens = softmax(tokens)
|
||||
|
||||
// Then apply minP
|
||||
got := minP(tokens, 0.2)
|
||||
|
Loading…
x
Reference in New Issue
Block a user