qwen25omni conversion wip

This commit is contained in:
Patrick Devine 2025-04-02 18:30:32 -07:00
parent 23267d783b
commit 8f9eafda06
2 changed files with 211 additions and 0 deletions

View File

@ -196,6 +196,8 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
conv = &phi3Model{}
case "Qwen2ForCausalLM":
conv = &qwen2Model{}
case "Qwen2_5OmniModel":
conv = &qwen25OmniModel{}
case "BertModel":
conv = &bertModel{}
case "CohereForCausalLM":

View File

@ -0,0 +1,209 @@
package convert
import (
"bytes"
"encoding/binary"
"io"
"log/slog"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/x448/float16"
"github.com/ollama/ollama/fs/ggml"
)
type qwen25OmniModel struct {
ModelParameters
TalkerModel struct {
AudioEndTokenID uint32 `json:"audio_end_token_id"`
AudioStartTokenID uint32 `json:"audio_start_token_id"`
AudioTokenIndex uint32 `json:"audio_token_index"`
HeadDim uint32 `json:"head_dim"`
HiddenSize uint32 `json:"hidden_size"`
ImageTokenIndex uint32 `json:"image_token_index"`
IntermediateSize uint32 `json:"intermediate_size"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
MaxWindowLayers uint32 `json:"max_window_layers"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
HiddenLayers uint32 `json:"num_hidden_layers"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RMSNormEPS float32 `json:"rms_norm_eps"`
RopeTheta float32 `json:"rope_theta"`
VideoTokenIndex uint32 `json:"video_token_index"`
VisionEndTokenID uint32 `json:"vision_end_token_id"`
VisionStartTokenID uint32 `json:"vision_start_token_id"`
} `json:"talker_config"`
ThinkerModel struct {
TextModel struct {
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
HiddenLayers uint32 `json:"num_hidden_layers"`
RopeTheta float32 `json:"rope_theta"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RMSNormEPS float32 `json:"rms_norm_eps"`
} `json:"text_config"`
} `json:"thinker_config"`
VisionModel struct {
} `json:"vision_config"`
Token2WavModel struct {
} `json:"token2wav_config"`
}
var _ ModelConverter = (*qwen25OmniModel)(nil)
func (q *qwen25OmniModel) KV(t *Tokenizer) ggml.KV {
kv := q.ModelParameters.KV(t)
kv["general.architecture"] = "qwen25omni"
kv["qwen25omni.block_count"] = q.ThinkerModel.TextModel.HiddenLayers
kv["qwen25omni.context_length"] = q.ThinkerModel.TextModel.MaxPositionEmbeddings
kv["qwen25omni.embedding_length"] = q.ThinkerModel.TextModel.HiddenSize
kv["qwen25omni.feed_forward_length"] = q.ThinkerModel.TextModel.IntermediateSize
kv["qwen25omni.attention.head_count"] = q.ThinkerModel.TextModel.NumAttentionHeads
kv["qwen25omni.attention.head_count_kv"] = q.ThinkerModel.TextModel.NumKeyValueHeads
kv["qwen25omni.rope.freq_base"] = q.ThinkerModel.TextModel.RopeTheta
kv["qwen25omni.attention.layer_norm_rms_epsilon"] = q.ThinkerModel.TextModel.RMSNormEPS
return kv
}
func (q *qwen25OmniModel) Tensors(ts []Tensor) []ggml.Tensor {
var out []ggml.Tensor
for _, t := range ts {
if strings.HasSuffix(t.Name(), "patch_embed.proj.weight") {
var buf bytes.Buffer
t.WriteTo(&buf)
newTensors := splitPatchEmbed(buf, t.Kind(), t.Shape())
out = append(out, newTensors...)
} else {
out = append(out, ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
}
return out
}
func splitPatchEmbed(buf bytes.Buffer, kind uint32, shape []uint64) []ggml.Tensor {
slog.Debug("patch stuff", "kind", kind, "shape", shape)
if kind != tensorKindF16 {
panic("tensor is of wrong type")
}
if len(shape) != 5 || (len(shape) == 5 && shape[2] != 2) {
panic("wrong sized tensor")
}
// determine the size of the tensor based on its shape
shapeToSize := func(s []int) int {
r := 1
for _, n := range s {
r *= int(n)
}
return r
}
// tensor.WithShape() wants []int
intShape := make([]int, len(shape))
for i, v := range shape {
intShape[i] = int(v)
}
u16s := make([]uint16, shapeToSize(intShape))
if err := binary.Read(&buf, binary.LittleEndian, u16s); err != nil {
panic("bad read")
}
f32s := make([]float32, len(u16s))
for i := range u16s {
f32s[i] = float16.Frombits(u16s[i]).Float32()
}
newTensors := []ggml.Tensor{}
getDataFromSlice := func(f32s []float32, shape []int, s []tensor.Slice) patchEmbed {
slog.Debug("getDataFromSlice", "num f32s", len(f32s), "shape", shape)
n := tensor.New(tensor.WithShape(shape...), tensor.WithBacking(f32s))
t, err := n.Slice(s...)
if err != nil {
panic(err)
}
ts, err := native.SelectF32(t.Materialize().(*tensor.Dense), 0)
if err != nil {
panic(err)
}
slog.Debug("first vals", "val 1", ts[0][0], "val 2", ts[0][1], "val 3", ts[0][2])
f16s := make(patchEmbed, shapeToSize(shape))
for r, row := range ts {
for c, col := range row {
f16s[r+c] = float16.Fromfloat32(col).Bits()
}
}
return f16s
}
p := getDataFromSlice(f32s, intShape, []tensor.Slice{nil, nil, tensor.S(0, 1, 1), nil, nil})
newTensors = append(newTensors, ggml.Tensor{
Name: "patch_embed.proj.0.weight",
Kind: kind,
Shape: append(shape[:2], shape[3:]...),
WriterTo: p,
})
p = getDataFromSlice(f32s, intShape, []tensor.Slice{nil, nil, tensor.S(1, 2, 1), nil, nil})
newTensors = append(newTensors, ggml.Tensor{
Name: "patch_embed.proj.1.weight",
Kind: kind,
Shape: append(shape[:2], shape[3:]...),
WriterTo: p,
})
return newTensors
}
type patchEmbed []uint16
func (t patchEmbed) WriteTo(w io.Writer) (int64, error) {
err := binary.Write(w, binary.LittleEndian, t)
return 0, err
}
func (p *qwen25OmniModel) Replacements() []string {
return []string{
"lm_head", "output",
"model.embed_tokens", "token_embd",
"thinker.audio_tower.layers", "a.blk",
"thinker.visual.blocks", "v.blk",
"thinker.model.layers", "blk",
"talker.model.layers", "tlk.blk",
"token2wav.code2wav_bigvgan_model", "t2w.b",
"token2wav.code2wav_dit_model", "t2w.d",
"input_layernorm", "attn_norm",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.q_proj", "attn_q",
"self_attn.o_proj", "attn_output",
"mlp.down_proj", "ffn_down",
"mlp.gate_proj", "ffn_gate",
"mlp.up_proj", "ffn_up",
"post_attention_layernorm", "ffn_norm",
"model.norm", "output_norm",
}
}