model: Update encoder cache to use multimodal input processing handler

The encoder cache needs to know the position of images in the input
stream so that it knows when to delete them. Previously images didn't
have a position, so we implied one by breaking batches before an
image and then assuming the image was in the first position. However,
multimodal objects are now given explicit positions in the input
stream, so we can use that instead.

Breaking batches was also a way to simulate a cross attention mask
for mllama. However, given that it only supports a single sequence
and a single image, this mask doesn't serve any real purpose.
Removing the batch break does not appear to affect the quality of
the output.

Most of this is simply moving the input data structures to a new
package to avoid import cycles.
This commit is contained in:
Jesse Gross 2025-03-08 15:45:31 -08:00 committed by Jesse Gross
parent 4614fafae0
commit a1cda80bcb
13 changed files with 157 additions and 160 deletions

View File

@ -4,6 +4,7 @@ import (
"errors"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
var (
@ -51,7 +52,7 @@ type Cache interface {
// StartForward is called before the start of the model's forward pass.
// For each token in the coming batch, there must be a corresponding
// entry in positions and seqs.
StartForward(ctx ml.Context, positions []int32, seqs []int) error
StartForward(ctx ml.Context, opts input.Options) error
// CopyPrefix copies tokens in the range [0, len) from srcSeq to dstSeq
CopyPrefix(srcSeq, dstSeq int, len int32)

View File

@ -8,6 +8,7 @@ import (
"slices"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
type shiftFn func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error)
@ -140,10 +141,10 @@ func (c *Causal) Close() {
}
}
func (c *Causal) StartForward(ctx ml.Context, positions []int32, seqs []int) error {
c.curBatchSize = len(positions)
c.curSequences = seqs
c.curPositions = positions
func (c *Causal) StartForward(ctx ml.Context, opts input.Options) error {
c.curBatchSize = len(opts.Positions)
c.curSequences = opts.Sequences
c.curPositions = opts.Positions
var err error
c.curLoc, err = c.findStartLoc()
@ -156,8 +157,8 @@ func (c *Causal) StartForward(ctx ml.Context, positions []int32, seqs []int) err
}
c.curCellRange = newRange()
for i, pos := range positions {
seq := seqs[i]
for i, pos := range opts.Positions {
seq := opts.Sequences[i]
c.cells[c.curLoc+i] = cacheCell{pos: pos, sequences: []int{seq}}

View File

@ -6,6 +6,7 @@ import (
"testing"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
type testCase struct {
@ -269,7 +270,7 @@ func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase)
context := backend.NewContext()
defer context.Close()
err := cache.StartForward(context, test.pos, test.seqs)
err := cache.StartForward(context, input.Options{Positions: test.pos, Sequences: test.seqs})
if err != nil {
panic(err)
}

View File

@ -4,6 +4,7 @@ import (
"fmt"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
// Encoder cache stores K and V tensors that are position independent
@ -78,9 +79,11 @@ func (c *EncoderCache) Close() {
}
}
func (c *EncoderCache) StartForward(ctx ml.Context, positions []int32, seqs []int) error {
// The image is always in the first position
c.curPos = positions[0]
func (c *EncoderCache) StartForward(ctx ml.Context, opts input.Options) error {
// We work with the most recent image
if len(opts.Multimodal) > 0 {
c.curPos = opts.Positions[opts.Multimodal[len(opts.Multimodal)-1].Index]
}
return nil
}

View File

@ -4,6 +4,7 @@ import (
"math"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
// Wrapper cache is a container for multiple types of caches,
@ -40,14 +41,14 @@ func (c *WrapperCache) Close() {
}
}
func (c *WrapperCache) StartForward(ctx ml.Context, positions []int32, seqs []int) error {
func (c *WrapperCache) StartForward(ctx ml.Context, opts input.Options) error {
for i, cache := range c.caches {
err := cache.StartForward(ctx, positions, seqs)
err := cache.StartForward(ctx, opts)
if err != nil {
// unwind on error - Remove with endIndex set to math.MaxInt32 does not fail
for j := i - 1; j >= 0; j-- {
for k := range positions {
_ = c.caches[j].Remove(seqs[k], positions[k], math.MaxInt32)
for k := range opts.Positions {
_ = c.caches[j].Remove(opts.Sequences[k], opts.Positions[k], math.MaxInt32)
}
}
return err

37
model/input/input.go Normal file
View File

@ -0,0 +1,37 @@
package input
// Input represents one token in the input stream
type Input struct {
// Token is a single element of text.
Token int32
// Multimodal is opaque data representing a non-text
// element such as an image (or part of one if the image
// can be processed in pieces). It may be either together
// with Token or on its own.
Multimodal any
// MultimodalHash is a unique representation of the data
// stored in Multimodal, used for caching and comparing
// equality.
MultimodalHash uint64
}
// MultimodalIndex is a multimodal element (such as an image)
// together with an index into the slice of Inputs with the
// corresponding token. Note that the index is not the same
// as the position - to find that use the index with the
// Positions slice.
type MultimodalIndex struct {
Index int
Multimodal any
}
// Options contains the inputs for a model forward pass
type Options struct {
Inputs []int32
Multimodal []MultimodalIndex
Positions []int32
Sequences []int
Outputs []int32
}

View File

@ -19,66 +19,12 @@ import (
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
_ "github.com/ollama/ollama/ml/backend"
"github.com/ollama/ollama/model/input"
)
// Input represents one token in the input stream
type Input struct {
// Token is a single element of text.
Token int32
// Multimodal is opaque data representing a non-text
// element such as an image (or part of one if the image
// can be processed in pieces). It may be either together
// with Token or on its own.
Multimodal any
// MultimodalHash is a unique representation of the data
// stored in Multimodal, used for caching and comparing
// equality.
MultimodalHash uint64
}
// MultimodalIndex is a multimodal element (such as an image)
// together with an index into the slice of Inputs with the
// corresponding token. Note that the index is not the same
// as the position - to find that use the index with the
// Positions slice.
type MultimodalIndex struct {
Index int
Multimodal any
}
// Options contains the inputs for a model forward pass
type Options struct {
Inputs []int32
Multimodal []MultimodalIndex
Positions []int32
Sequences []int
Outputs []int32
}
type config struct {
Cache kvcache.Cache
}
// Base implements the common fields and methods for all models
type Base struct {
b ml.Backend
config
}
// Backend returns the underlying backend that will run the model
func (m *Base) Backend() ml.Backend {
return m.b
}
func (m *Base) Config() config {
return m.config
}
// Model implements a specific model architecture, defining the forward pass and any model-specific configuration
type Model interface {
Forward(ml.Context, Options) (ml.Tensor, error)
Forward(ml.Context, input.Options) (ml.Tensor, error)
Backend() ml.Backend
Config() config
@ -112,7 +58,26 @@ type MultimodalProcessor interface {
// This function is also responsible for updating MultimodalHash for any Multimodal
// that is modified to ensure that there is a unique hash value that accurately
// represents the contents.
PostTokenize(ml.Context, []Input) ([]Input, error)
PostTokenize(ml.Context, []input.Input) ([]input.Input, error)
}
// Base implements the common fields and methods for all models
type Base struct {
b ml.Backend
config
}
type config struct {
Cache kvcache.Cache
}
// Backend returns the underlying backend that will run the model
func (m *Base) Backend() ml.Backend {
return m.b
}
func (m *Base) Config() config {
return m.config
}
var models = make(map[string]func(ml.Config) (Model, error))
@ -313,7 +278,7 @@ func canNil(t reflect.Type) bool {
t.Kind() == reflect.Slice
}
func Forward(ctx ml.Context, m Model, opts Options) (ml.Tensor, error) {
func Forward(ctx ml.Context, m Model, opts input.Options) (ml.Tensor, error) {
if len(opts.Positions) != len(opts.Sequences) {
return nil, fmt.Errorf("length of positions (%v) must match length of seqs (%v)", len(opts.Positions), len(opts.Sequences))
}
@ -324,7 +289,7 @@ func Forward(ctx ml.Context, m Model, opts Options) (ml.Tensor, error) {
cache := m.Config().Cache
if cache != nil {
err := cache.StartForward(ctx, opts.Positions, opts.Sequences)
err := cache.StartForward(ctx, opts)
if err != nil {
return nil, err
}

View File

@ -11,6 +11,7 @@ import (
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/backend/ggml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model/input"
)
func TestParseTags(t *testing.T) {
@ -162,7 +163,7 @@ func TestGetTextProcessor(t *testing.T) {
type notTextProcessorModel struct{}
func (notTextProcessorModel) Forward(ml.Context, Options) (ml.Tensor, error) {
func (notTextProcessorModel) Forward(ml.Context, input.Options) (ml.Tensor, error) {
panic("unimplemented")
}

View File

@ -9,6 +9,7 @@ import (
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Options struct {
@ -137,7 +138,7 @@ func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Ten
return hiddenState.Add(ctx, residual)
}
func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
if err != nil {
return nil, err

View File

@ -12,6 +12,7 @@ import (
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Model struct {
@ -101,8 +102,8 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, er
return m.Projector.Forward(ctx, crossAttentionStates), nil
}
func (m *Model) PostTokenize(ctx ml.Context, inputs []model.Input) ([]model.Input, error) {
var images []model.Input
func (m *Model) PostTokenize(ctx ml.Context, inputs []input.Input) ([]input.Input, error) {
var images []input.Input
fnvHash := fnv.New64a()
for i := range inputs {
@ -125,15 +126,15 @@ func (m *Model) PostTokenize(ctx ml.Context, inputs []model.Input) ([]model.Inpu
}
}
inputs = slices.DeleteFunc(inputs, func(input model.Input) bool { return input.Token == -1 })
inputs = slices.DeleteFunc(inputs, func(input input.Input) bool { return input.Token == -1 })
return inputs, nil
}
func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
var crossAttentionStates ml.Tensor
if opts.Multimodal != nil {
crossAttentionStates = opts.Multimodal[0].Multimodal.(ml.Tensor)
if len(opts.Multimodal) > 0 {
crossAttentionStates = opts.Multimodal[len(opts.Multimodal)-1].Multimodal.(ml.Tensor)
}
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))

View File

@ -10,6 +10,7 @@ import (
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type InputCache struct {
@ -79,7 +80,7 @@ type InputCacheSlot struct {
Id int
// Inputs that are stored in the KV cache
Inputs []model.Input
Inputs []input.Input
// is this cache actively being processed as part of a sequence?
InUse bool
@ -88,7 +89,7 @@ type InputCacheSlot struct {
lastUsed time.Time
}
func (c *InputCache) LoadCacheSlot(prompt []model.Input, cachePrompt bool) (*InputCacheSlot, []model.Input, error) {
func (c *InputCache) LoadCacheSlot(prompt []input.Input, cachePrompt bool) (*InputCacheSlot, []input.Input, error) {
var slot *InputCacheSlot
var numPast int32
var err error
@ -139,7 +140,7 @@ func (c *InputCache) LoadCacheSlot(prompt []model.Input, cachePrompt bool) (*Inp
return slot, prompt, nil
}
func (c *InputCache) findLongestCacheSlot(prompt []model.Input) (*InputCacheSlot, int32, error) {
func (c *InputCache) findLongestCacheSlot(prompt []input.Input) (*InputCacheSlot, int32, error) {
longest := int32(-1)
var longestSlot *InputCacheSlot
@ -162,7 +163,7 @@ func (c *InputCache) findLongestCacheSlot(prompt []model.Input) (*InputCacheSlot
return longestSlot, longest, nil
}
func (c *InputCache) findBestCacheSlot(prompt []model.Input) (*InputCacheSlot, int32, error) {
func (c *InputCache) findBestCacheSlot(prompt []input.Input) (*InputCacheSlot, int32, error) {
oldest := time.Now()
var oldestSlot *InputCacheSlot
@ -198,7 +199,7 @@ func (c *InputCache) findBestCacheSlot(prompt []model.Input) (*InputCacheSlot, i
if longest > 0 && longestSlot != oldestSlot {
slog.Debug("forking cache slot", "src", longestSlot.Id, "dst", oldestSlot.Id, "inputs", longest, "total",
len(longestSlot.Inputs))
oldestSlot.Inputs = make([]model.Input, longest)
oldestSlot.Inputs = make([]input.Input, longest)
copy(oldestSlot.Inputs, longestSlot.Inputs[:longest])
if c.cache != nil {
c.cache.CopyPrefix(longestSlot.Id, oldestSlot.Id, longest)
@ -208,7 +209,7 @@ func (c *InputCache) findBestCacheSlot(prompt []model.Input) (*InputCacheSlot, i
return oldestSlot, longest, nil
}
func countCommonPrefix(a []model.Input, b []model.Input) int32 {
func countCommonPrefix(a []input.Input, b []input.Input) int32 {
var count int32
for i := range a {

View File

@ -5,7 +5,7 @@ import (
"testing"
"time"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
func TestCountCommon(t *testing.T) {
@ -15,50 +15,50 @@ func TestCountCommon(t *testing.T) {
tests := []struct {
name string
t1 []model.Input
t2 []model.Input
t1 []input.Input
t2 []input.Input
expected int32
}{
{
name: "Equal",
t1: []model.Input{{Token: 1}, {Token: 2}, {Token: 3}},
t2: []model.Input{{Token: 1}, {Token: 2}, {Token: 3}},
t1: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
t2: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
expected: 3,
},
{
name: "Prefix",
t1: []model.Input{{Token: 1}},
t2: []model.Input{{Token: 1}, {Token: 2}, {Token: 3}},
t1: []input.Input{{Token: 1}},
t2: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
expected: 1,
},
{
name: "Image Prefix",
t1: []model.Input{{Multimodal: imgA, MultimodalHash: 1}},
t2: []model.Input{{Multimodal: imgA, MultimodalHash: 1}, {Multimodal: imgB, MultimodalHash: 2}, {Multimodal: imgC, MultimodalHash: 3}},
t1: []input.Input{{Multimodal: imgA, MultimodalHash: 1}},
t2: []input.Input{{Multimodal: imgA, MultimodalHash: 1}, {Multimodal: imgB, MultimodalHash: 2}, {Multimodal: imgC, MultimodalHash: 3}},
expected: 1,
},
{
name: "Mixed",
t1: []model.Input{{Token: 1}, {Multimodal: imgA, MultimodalHash: 1}},
t2: []model.Input{{Token: 1}, {Multimodal: imgA, MultimodalHash: 1}, {Token: 5}},
t1: []input.Input{{Token: 1}, {Multimodal: imgA, MultimodalHash: 1}},
t2: []input.Input{{Token: 1}, {Multimodal: imgA, MultimodalHash: 1}, {Token: 5}},
expected: 2,
},
{
name: "Mixed, Same Length",
t1: []model.Input{{Token: 1}, {Multimodal: imgA, MultimodalHash: 1}},
t2: []model.Input{{Token: 1}, {Multimodal: imgB, MultimodalHash: 2}},
t1: []input.Input{{Token: 1}, {Multimodal: imgA, MultimodalHash: 1}},
t2: []input.Input{{Token: 1}, {Multimodal: imgB, MultimodalHash: 2}},
expected: 1,
},
{
name: "Empty",
t1: []model.Input{},
t2: []model.Input{{Token: 1}, {Token: 2}, {Token: 3}},
t1: []input.Input{},
t2: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
expected: 0,
},
{
name: "Both Empty",
t1: []model.Input{},
t2: []model.Input{},
t1: []input.Input{},
t2: []input.Input{},
expected: 0,
},
}
@ -82,7 +82,7 @@ func TestFindCacheSlot(t *testing.T) {
tests := []struct {
name string
cache InputCache
prompt []model.Input
prompt []input.Input
longest expected
best expected
}{
@ -91,18 +91,18 @@ func TestFindCacheSlot(t *testing.T) {
cache: InputCache{slots: []InputCacheSlot{
{
Id: 0,
Inputs: []model.Input{},
Inputs: []input.Input{},
InUse: false,
lastUsed: time.Time{},
},
{
Id: 1,
Inputs: []model.Input{},
Inputs: []input.Input{},
InUse: false,
lastUsed: time.Time{},
},
}},
prompt: []model.Input{{Token: 1}},
prompt: []input.Input{{Token: 1}},
longest: expected{result: 0, len: 0},
best: expected{result: 0, len: 0},
},
@ -111,18 +111,18 @@ func TestFindCacheSlot(t *testing.T) {
cache: InputCache{slots: []InputCacheSlot{
{
Id: 0,
Inputs: []model.Input{{Token: 1}},
Inputs: []input.Input{{Token: 1}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []model.Input{{Token: 1}, {Token: 2}},
Inputs: []input.Input{{Token: 1}, {Token: 2}},
InUse: false,
lastUsed: time.Now().Add(-2 * time.Second),
},
}},
prompt: []model.Input{{Token: 1}, {Token: 2}},
prompt: []input.Input{{Token: 1}, {Token: 2}},
longest: expected{result: 1, len: 2},
best: expected{result: 1, len: 2},
},
@ -131,18 +131,18 @@ func TestFindCacheSlot(t *testing.T) {
cache: InputCache{slots: []InputCacheSlot{
{
Id: 0,
Inputs: []model.Input{{Token: 1}, {Token: 2}},
Inputs: []input.Input{{Token: 1}, {Token: 2}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []model.Input{},
Inputs: []input.Input{},
InUse: false,
lastUsed: time.Time{},
},
}},
prompt: []model.Input{{Token: 2}},
prompt: []input.Input{{Token: 2}},
longest: expected{result: 0, len: 0},
best: expected{result: 1, len: 0},
},
@ -152,19 +152,19 @@ func TestFindCacheSlot(t *testing.T) {
slots: []InputCacheSlot{
{
Id: 0,
Inputs: []model.Input{{Token: 1}, {Token: 2}},
Inputs: []input.Input{{Token: 1}, {Token: 2}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []model.Input{},
Inputs: []input.Input{},
InUse: false,
lastUsed: time.Time{},
},
},
},
prompt: []model.Input{{Token: 1}},
prompt: []input.Input{{Token: 1}},
longest: expected{result: 0, len: 1},
best: expected{result: 1, len: 1},
},
@ -173,18 +173,18 @@ func TestFindCacheSlot(t *testing.T) {
cache: InputCache{slots: []InputCacheSlot{
{
Id: 0,
Inputs: []model.Input{{Token: 1}},
Inputs: []input.Input{{Token: 1}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []model.Input{{Token: 1}, {Token: 2}},
Inputs: []input.Input{{Token: 1}, {Token: 2}},
InUse: false,
lastUsed: time.Now().Add(-2 * time.Second),
},
}},
prompt: []model.Input{{Token: 2}, {Token: 3}},
prompt: []input.Input{{Token: 2}, {Token: 3}},
longest: expected{result: 0, len: 0},
best: expected{result: 1, len: 0},
},
@ -193,18 +193,18 @@ func TestFindCacheSlot(t *testing.T) {
cache: InputCache{slots: []InputCacheSlot{
{
Id: 0,
Inputs: []model.Input{{Token: 1}, {Token: 2}},
Inputs: []input.Input{{Token: 1}, {Token: 2}},
InUse: true,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []model.Input{{Token: 1}},
Inputs: []input.Input{{Token: 1}},
InUse: false,
lastUsed: time.Now().Add(-2 * time.Second),
},
}},
prompt: []model.Input{{Token: 1}, {Token: 2}},
prompt: []input.Input{{Token: 1}, {Token: 2}},
longest: expected{result: 1, len: 1},
best: expected{result: 1, len: 2},
},

View File

@ -26,6 +26,7 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
"github.com/ollama/ollama/runner/common"
"github.com/ollama/ollama/sample"
@ -41,10 +42,10 @@ type Sequence struct {
iBatch int
// prompt inputs left to evaluate
inputs []model.Input
inputs []input.Input
// inputs that have been added to a batch but not yet submitted to Forward
pendingInputs []model.Input
pendingInputs []input.Input
// tokens that have been generated but not returned yet (e.g. for stop sequences)
pendingResponses []string
@ -144,8 +145,8 @@ func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequen
// inputs processes the prompt and images into a list of inputs
// by splitting the prompt on [img-<n>] tags, tokenizing text and
// decoding images
func (s *Server) inputs(ctx ml.Context, prompt string, images []ImageData) ([]model.Input, error) {
var inputs []model.Input
func (s *Server) inputs(ctx ml.Context, prompt string, images []ImageData) ([]input.Input, error) {
var inputs []input.Input
var parts []string
var matches [][]string
@ -168,7 +169,7 @@ func (s *Server) inputs(ctx ml.Context, prompt string, images []ImageData) ([]mo
}
for _, t := range tokens {
inputs = append(inputs, model.Input{Token: t})
inputs = append(inputs, input.Input{Token: t})
}
// image - decode and store
@ -196,7 +197,7 @@ func (s *Server) inputs(ctx ml.Context, prompt string, images []ImageData) ([]mo
_, _ = s.multimodalHash.Write(images[imageIndex].Data)
imageHash := s.multimodalHash.Sum64()
inputs = append(inputs, model.Input{Multimodal: imageEmbeddings, MultimodalHash: imageHash})
inputs = append(inputs, input.Input{Multimodal: imageEmbeddings, MultimodalHash: imageHash})
postTokenize = true
}
}
@ -250,9 +251,6 @@ type Server struct {
// KV cache
cache *InputCache
// next sequence for prompt processing to avoid starvation
nextSeq int
// multimodalHash generates hashes for comparing equality
// of non-text data
multimodalHash maphash.Hash
@ -329,29 +327,25 @@ func (s *Server) processBatch() error {
}
defer s.mu.Unlock()
var options model.Options
seqIdx := s.nextSeq - 1
for range s.seqs {
seqIdx = (seqIdx + 1) % len(s.seqs)
seq := s.seqs[seqIdx]
var options input.Options
for i, seq := range s.seqs {
if seq == nil {
continue
}
// if past the num predict limit
if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
s.removeSequence(seqIdx, "limit")
s.removeSequence(i, "limit")
continue
}
if !s.cache.enabled {
seq.inputs = append(seq.cache.Inputs, seq.inputs...)
seq.cache.Inputs = []model.Input{}
seq.cache.Inputs = []input.Input{}
}
for i, input := range seq.inputs {
for j, inp := range seq.inputs {
if int32(len(seq.cache.Inputs)+len(seq.pendingInputs)+1) > s.cache.numCtx {
if len(seq.pendingInputs) == 0 {
err := s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
@ -363,33 +357,23 @@ func (s *Server) processBatch() error {
}
}
if i >= s.batchSize {
if j >= s.batchSize {
break
}
// TODO(jessegross): This is a workaround for generating an attention mask and also providing a hint
// to the encoder cache.
//
// Break the batch when switching from text to images so that images are always at the beginning.
if input.Multimodal != nil && !(len(seq.pendingInputs) == 0 ||
(len(options.Multimodal) > 0 && options.Multimodal[len(options.Multimodal)-1].Index == len(options.Inputs)-1)) {
s.nextSeq = seqIdx
break
}
options.Inputs = append(options.Inputs, input.Token)
if input.Multimodal != nil {
options.Multimodal = append(options.Multimodal, model.MultimodalIndex{Index: len(options.Inputs) - 1, Multimodal: input.Multimodal})
options.Inputs = append(options.Inputs, inp.Token)
if inp.Multimodal != nil {
options.Multimodal = append(options.Multimodal, input.MultimodalIndex{Index: len(options.Inputs) - 1, Multimodal: inp.Multimodal})
}
options.Positions = append(options.Positions, int32(len(seq.cache.Inputs)+len(seq.pendingInputs)))
options.Sequences = append(options.Sequences, seq.cache.Id)
seq.iBatch = len(options.Outputs)
if i+1 == len(seq.inputs) {
if j+1 == len(seq.inputs) {
options.Outputs = append(options.Outputs, int32(len(options.Inputs)-1))
}
seq.pendingInputs = append(seq.pendingInputs, input)
seq.pendingInputs = append(seq.pendingInputs, inp)
}
seq.inputs = seq.inputs[len(seq.pendingInputs):]
@ -417,7 +401,7 @@ func (s *Server) processBatch() error {
// After calling Forward, pending inputs are now in the cache
if len(seq.pendingInputs) > 0 {
seq.cache.Inputs = append(seq.cache.Inputs, seq.pendingInputs...)
seq.pendingInputs = []model.Input{}
seq.pendingInputs = []input.Input{}
}
// don't sample prompt processing
@ -464,7 +448,7 @@ func (s *Server) processBatch() error {
return err
}
seq.inputs = []model.Input{{Token: token}}
seq.inputs = []input.Input{{Token: token}}
seq.pendingResponses = append(seq.pendingResponses, piece)
sequence := strings.Join(seq.pendingResponses, "")