mirror of
https://github.com/ollama/ollama.git
synced 2025-11-11 19:57:43 +01:00
model: Update encoder cache to use multimodal input processing handler
The encoder cache needs to know the position of images in the input stream so that it knows when to delete them. Previously images didn't have a position, so we implied one by breaking batches before an image and then assuming the image was in the first position. However, multimodal objects are now given explicit positions in the input stream, so we can use that instead. Breaking batches was also a way to simulate a cross attention mask for mllama. However, given that it only supports a single sequence and a single image, this mask doesn't serve any real purpose. Removing the batch break does not appear to affect the quality of the output. Most of this is simply moving the input data structures to a new package to avoid import cycles.
This commit is contained in:
@@ -5,7 +5,7 @@ import (
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/model"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
func TestCountCommon(t *testing.T) {
|
||||
@@ -15,50 +15,50 @@ func TestCountCommon(t *testing.T) {
|
||||
|
||||
tests := []struct {
|
||||
name string
|
||||
t1 []model.Input
|
||||
t2 []model.Input
|
||||
t1 []input.Input
|
||||
t2 []input.Input
|
||||
expected int32
|
||||
}{
|
||||
{
|
||||
name: "Equal",
|
||||
t1: []model.Input{{Token: 1}, {Token: 2}, {Token: 3}},
|
||||
t2: []model.Input{{Token: 1}, {Token: 2}, {Token: 3}},
|
||||
t1: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
|
||||
t2: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
|
||||
expected: 3,
|
||||
},
|
||||
{
|
||||
name: "Prefix",
|
||||
t1: []model.Input{{Token: 1}},
|
||||
t2: []model.Input{{Token: 1}, {Token: 2}, {Token: 3}},
|
||||
t1: []input.Input{{Token: 1}},
|
||||
t2: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
|
||||
expected: 1,
|
||||
},
|
||||
{
|
||||
name: "Image Prefix",
|
||||
t1: []model.Input{{Multimodal: imgA, MultimodalHash: 1}},
|
||||
t2: []model.Input{{Multimodal: imgA, MultimodalHash: 1}, {Multimodal: imgB, MultimodalHash: 2}, {Multimodal: imgC, MultimodalHash: 3}},
|
||||
t1: []input.Input{{Multimodal: imgA, MultimodalHash: 1}},
|
||||
t2: []input.Input{{Multimodal: imgA, MultimodalHash: 1}, {Multimodal: imgB, MultimodalHash: 2}, {Multimodal: imgC, MultimodalHash: 3}},
|
||||
expected: 1,
|
||||
},
|
||||
{
|
||||
name: "Mixed",
|
||||
t1: []model.Input{{Token: 1}, {Multimodal: imgA, MultimodalHash: 1}},
|
||||
t2: []model.Input{{Token: 1}, {Multimodal: imgA, MultimodalHash: 1}, {Token: 5}},
|
||||
t1: []input.Input{{Token: 1}, {Multimodal: imgA, MultimodalHash: 1}},
|
||||
t2: []input.Input{{Token: 1}, {Multimodal: imgA, MultimodalHash: 1}, {Token: 5}},
|
||||
expected: 2,
|
||||
},
|
||||
{
|
||||
name: "Mixed, Same Length",
|
||||
t1: []model.Input{{Token: 1}, {Multimodal: imgA, MultimodalHash: 1}},
|
||||
t2: []model.Input{{Token: 1}, {Multimodal: imgB, MultimodalHash: 2}},
|
||||
t1: []input.Input{{Token: 1}, {Multimodal: imgA, MultimodalHash: 1}},
|
||||
t2: []input.Input{{Token: 1}, {Multimodal: imgB, MultimodalHash: 2}},
|
||||
expected: 1,
|
||||
},
|
||||
{
|
||||
name: "Empty",
|
||||
t1: []model.Input{},
|
||||
t2: []model.Input{{Token: 1}, {Token: 2}, {Token: 3}},
|
||||
t1: []input.Input{},
|
||||
t2: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
|
||||
expected: 0,
|
||||
},
|
||||
{
|
||||
name: "Both Empty",
|
||||
t1: []model.Input{},
|
||||
t2: []model.Input{},
|
||||
t1: []input.Input{},
|
||||
t2: []input.Input{},
|
||||
expected: 0,
|
||||
},
|
||||
}
|
||||
@@ -82,7 +82,7 @@ func TestFindCacheSlot(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
cache InputCache
|
||||
prompt []model.Input
|
||||
prompt []input.Input
|
||||
longest expected
|
||||
best expected
|
||||
}{
|
||||
@@ -91,18 +91,18 @@ func TestFindCacheSlot(t *testing.T) {
|
||||
cache: InputCache{slots: []InputCacheSlot{
|
||||
{
|
||||
Id: 0,
|
||||
Inputs: []model.Input{},
|
||||
Inputs: []input.Input{},
|
||||
InUse: false,
|
||||
lastUsed: time.Time{},
|
||||
},
|
||||
{
|
||||
Id: 1,
|
||||
Inputs: []model.Input{},
|
||||
Inputs: []input.Input{},
|
||||
InUse: false,
|
||||
lastUsed: time.Time{},
|
||||
},
|
||||
}},
|
||||
prompt: []model.Input{{Token: 1}},
|
||||
prompt: []input.Input{{Token: 1}},
|
||||
longest: expected{result: 0, len: 0},
|
||||
best: expected{result: 0, len: 0},
|
||||
},
|
||||
@@ -111,18 +111,18 @@ func TestFindCacheSlot(t *testing.T) {
|
||||
cache: InputCache{slots: []InputCacheSlot{
|
||||
{
|
||||
Id: 0,
|
||||
Inputs: []model.Input{{Token: 1}},
|
||||
Inputs: []input.Input{{Token: 1}},
|
||||
InUse: false,
|
||||
lastUsed: time.Now().Add(-time.Second),
|
||||
},
|
||||
{
|
||||
Id: 1,
|
||||
Inputs: []model.Input{{Token: 1}, {Token: 2}},
|
||||
Inputs: []input.Input{{Token: 1}, {Token: 2}},
|
||||
InUse: false,
|
||||
lastUsed: time.Now().Add(-2 * time.Second),
|
||||
},
|
||||
}},
|
||||
prompt: []model.Input{{Token: 1}, {Token: 2}},
|
||||
prompt: []input.Input{{Token: 1}, {Token: 2}},
|
||||
longest: expected{result: 1, len: 2},
|
||||
best: expected{result: 1, len: 2},
|
||||
},
|
||||
@@ -131,18 +131,18 @@ func TestFindCacheSlot(t *testing.T) {
|
||||
cache: InputCache{slots: []InputCacheSlot{
|
||||
{
|
||||
Id: 0,
|
||||
Inputs: []model.Input{{Token: 1}, {Token: 2}},
|
||||
Inputs: []input.Input{{Token: 1}, {Token: 2}},
|
||||
InUse: false,
|
||||
lastUsed: time.Now().Add(-time.Second),
|
||||
},
|
||||
{
|
||||
Id: 1,
|
||||
Inputs: []model.Input{},
|
||||
Inputs: []input.Input{},
|
||||
InUse: false,
|
||||
lastUsed: time.Time{},
|
||||
},
|
||||
}},
|
||||
prompt: []model.Input{{Token: 2}},
|
||||
prompt: []input.Input{{Token: 2}},
|
||||
longest: expected{result: 0, len: 0},
|
||||
best: expected{result: 1, len: 0},
|
||||
},
|
||||
@@ -152,19 +152,19 @@ func TestFindCacheSlot(t *testing.T) {
|
||||
slots: []InputCacheSlot{
|
||||
{
|
||||
Id: 0,
|
||||
Inputs: []model.Input{{Token: 1}, {Token: 2}},
|
||||
Inputs: []input.Input{{Token: 1}, {Token: 2}},
|
||||
InUse: false,
|
||||
lastUsed: time.Now().Add(-time.Second),
|
||||
},
|
||||
{
|
||||
Id: 1,
|
||||
Inputs: []model.Input{},
|
||||
Inputs: []input.Input{},
|
||||
InUse: false,
|
||||
lastUsed: time.Time{},
|
||||
},
|
||||
},
|
||||
},
|
||||
prompt: []model.Input{{Token: 1}},
|
||||
prompt: []input.Input{{Token: 1}},
|
||||
longest: expected{result: 0, len: 1},
|
||||
best: expected{result: 1, len: 1},
|
||||
},
|
||||
@@ -173,18 +173,18 @@ func TestFindCacheSlot(t *testing.T) {
|
||||
cache: InputCache{slots: []InputCacheSlot{
|
||||
{
|
||||
Id: 0,
|
||||
Inputs: []model.Input{{Token: 1}},
|
||||
Inputs: []input.Input{{Token: 1}},
|
||||
InUse: false,
|
||||
lastUsed: time.Now().Add(-time.Second),
|
||||
},
|
||||
{
|
||||
Id: 1,
|
||||
Inputs: []model.Input{{Token: 1}, {Token: 2}},
|
||||
Inputs: []input.Input{{Token: 1}, {Token: 2}},
|
||||
InUse: false,
|
||||
lastUsed: time.Now().Add(-2 * time.Second),
|
||||
},
|
||||
}},
|
||||
prompt: []model.Input{{Token: 2}, {Token: 3}},
|
||||
prompt: []input.Input{{Token: 2}, {Token: 3}},
|
||||
longest: expected{result: 0, len: 0},
|
||||
best: expected{result: 1, len: 0},
|
||||
},
|
||||
@@ -193,18 +193,18 @@ func TestFindCacheSlot(t *testing.T) {
|
||||
cache: InputCache{slots: []InputCacheSlot{
|
||||
{
|
||||
Id: 0,
|
||||
Inputs: []model.Input{{Token: 1}, {Token: 2}},
|
||||
Inputs: []input.Input{{Token: 1}, {Token: 2}},
|
||||
InUse: true,
|
||||
lastUsed: time.Now().Add(-time.Second),
|
||||
},
|
||||
{
|
||||
Id: 1,
|
||||
Inputs: []model.Input{{Token: 1}},
|
||||
Inputs: []input.Input{{Token: 1}},
|
||||
InUse: false,
|
||||
lastUsed: time.Now().Add(-2 * time.Second),
|
||||
},
|
||||
}},
|
||||
prompt: []model.Input{{Token: 1}, {Token: 2}},
|
||||
prompt: []input.Input{{Token: 1}, {Token: 2}},
|
||||
longest: expected{result: 1, len: 1},
|
||||
best: expected{result: 1, len: 2},
|
||||
},
|
||||
|
||||
Reference in New Issue
Block a user