mirror of
https://github.com/ollama/ollama.git
synced 2025-04-04 09:58:31 +02:00
wip
This commit is contained in:
parent
191b1b1eb3
commit
afb34b0e60
@ -182,8 +182,10 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
|
||||
|
||||
var conv ModelConverter
|
||||
switch p.Architectures[0] {
|
||||
case "LlamaForCausalLM", "MistralForCausalLM":
|
||||
case "LlamaForCausalLM":
|
||||
conv = &llamaModel{}
|
||||
case "MistralForCausalLM":
|
||||
conv = &mistralModel{}
|
||||
case "MixtralForCausalLM":
|
||||
conv = &mixtralModel{}
|
||||
case "GemmaForCausalLM":
|
||||
|
209
convert/convert_mistral.go
Normal file
209
convert/convert_mistral.go
Normal file
@ -0,0 +1,209 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"fmt"
|
||||
"math"
|
||||
"strings"
|
||||
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type mistralModel struct {
|
||||
ModelParameters
|
||||
NLayers uint32 `json:"n_layers"`
|
||||
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
NLayer uint32 `json:"n_layer"`
|
||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||
NCtx uint32 `json:"n_ctx"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
NEmbd uint32 `json:"n_embd"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
NInner uint32 `json:"n_inner"`
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NHead uint32 `json:"n_head"`
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
RopeScaling struct {
|
||||
Type string `json:"type"`
|
||||
RopeType string `json:"rope_type"`
|
||||
Factor float32 `json:"factor"`
|
||||
LowFrequencyFactor float32 `json:"low_freq_factor"`
|
||||
HighFrequencyFactor float32 `json:"high_freq_factor"`
|
||||
OriginalMaxPositionalEmbeddings uint32 `json:"original_max_positional_embeddings"`
|
||||
|
||||
factors ropeFactor
|
||||
} `json:"rope_scaling"`
|
||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||
LayerNormEPS float32 `json:"layer_norm_eps"`
|
||||
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
|
||||
NormEpsilon float32 `json:"norm_epsilon"`
|
||||
HeadDim uint32 `json:"head_dim"`
|
||||
}
|
||||
|
||||
func (p *mistralModel) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "mistral"
|
||||
kv["mistral.vocab_size"] = p.VocabSize
|
||||
|
||||
kv["mistral.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)
|
||||
|
||||
if contextLength := cmp.Or(p.MaxPositionEmbeddings, p.NCtx); contextLength > 0 {
|
||||
kv["mistral.context_length"] = contextLength
|
||||
}
|
||||
|
||||
if embeddingLength := cmp.Or(p.HiddenSize, p.NEmbd); embeddingLength > 0 {
|
||||
kv["mistral.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd)
|
||||
}
|
||||
|
||||
if feedForwardLength := cmp.Or(p.IntermediateSize, p.NInner); feedForwardLength > 0 {
|
||||
kv["mistral.feed_forward_length"] = cmp.Or(p.IntermediateSize, p.NInner)
|
||||
}
|
||||
|
||||
if headCount := cmp.Or(p.NumAttentionHeads, p.NHead); headCount > 0 {
|
||||
kv["mistral.attention.head_count"] = cmp.Or(p.NumAttentionHeads, p.NHead)
|
||||
kv["mistral.rope.dimension_count"] = p.HiddenSize / headCount
|
||||
}
|
||||
|
||||
if p.RopeTheta > 0 {
|
||||
kv["mistral.rope.freq_base"] = p.RopeTheta
|
||||
}
|
||||
|
||||
if p.RopeScaling.Type == "linear" {
|
||||
kv["mistral.rope.scaling.type"] = p.RopeScaling.Type
|
||||
kv["mistral.rope.scaling.factor"] = p.RopeScaling.Factor
|
||||
} else if p.RopeScaling.RopeType == "llama3" {
|
||||
dim := p.HiddenSize / p.NumAttentionHeads
|
||||
for i := uint32(0); i < dim; i += 2 {
|
||||
factor := cmp.Or(p.RopeScaling.Factor, 8.0)
|
||||
factorLow := cmp.Or(p.RopeScaling.LowFrequencyFactor, 1.0)
|
||||
factorHigh := cmp.Or(p.RopeScaling.HighFrequencyFactor, 4.0)
|
||||
|
||||
original := cmp.Or(p.RopeScaling.OriginalMaxPositionalEmbeddings, 8192)
|
||||
lambdaLow := float32(original) / factorLow
|
||||
lambdaHigh := float32(original) / factorHigh
|
||||
|
||||
lambda := 2 * math.Pi * math.Pow(float64(p.RopeTheta), float64(i)/float64(dim))
|
||||
if lambda < float64(lambdaHigh) {
|
||||
p.RopeScaling.factors = append(p.RopeScaling.factors, 1.0)
|
||||
} else if lambda > float64(lambdaLow) {
|
||||
p.RopeScaling.factors = append(p.RopeScaling.factors, factor)
|
||||
} else {
|
||||
smooth := (float32(original)/float32(lambda) - factorLow) / (factorHigh - factorLow)
|
||||
p.RopeScaling.factors = append(p.RopeScaling.factors, 1.0/((1-smooth)/factor+smooth))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if p.NumKeyValueHeads > 0 {
|
||||
kv["mistral.attention.head_count_kv"] = p.NumKeyValueHeads
|
||||
}
|
||||
|
||||
if p.RMSNormEPS > 0 {
|
||||
kv["mistral.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
|
||||
}
|
||||
|
||||
if layerNormEpsilon := cmp.Or(p.LayerNormEPS, p.LayerNormEpsilon, p.NormEpsilon); layerNormEpsilon > 0 {
|
||||
kv["mistral.attention.layer_norm_epsilon"] = layerNormEpsilon
|
||||
}
|
||||
|
||||
if p.HeadDim > 0 {
|
||||
kv["mistral.attention.key_length"] = p.HeadDim
|
||||
kv["mistral.attention.value_length"] = p.HeadDim
|
||||
}
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *mistralModel) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var out []ggml.Tensor
|
||||
|
||||
if p.RopeScaling.factors != nil {
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: "rope_freqs.weight",
|
||||
Kind: 0,
|
||||
Shape: []uint64{uint64(len(p.RopeScaling.factors))},
|
||||
WriterTo: p.RopeScaling.factors,
|
||||
})
|
||||
}
|
||||
|
||||
for _, t := range ts {
|
||||
if strings.HasSuffix(t.Name(), "attn_q.weight") ||
|
||||
strings.HasSuffix(t.Name(), "attn_k.weight") {
|
||||
t.SetRepacker(p.repack)
|
||||
}
|
||||
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
func (p *mistralModel) Replacements() []string {
|
||||
return []string{
|
||||
"tok_embeddings.weight", "token_embd",
|
||||
"norm", "output_norm",
|
||||
"layers", "blk",
|
||||
"attention_norm", "attn_norm",
|
||||
"attention.wq", "attn_q",
|
||||
"attention.wk", "attn_k",
|
||||
"attention.wv", "attn_v",
|
||||
"attention.wo", "attn_output",
|
||||
"feed_forward.w1", "ffn_gate",
|
||||
"feed_forward.w2", "ffn_down",
|
||||
"feed_forward.w3", "ffn_up",
|
||||
}
|
||||
}
|
||||
|
||||
func (p *mistralModel) repack(name string, data []float32, shape []uint64) ([]float32, error) {
|
||||
var dims []int
|
||||
for _, dim := range shape {
|
||||
dims = append(dims, int(dim))
|
||||
}
|
||||
|
||||
var heads uint32
|
||||
if strings.HasSuffix(name, "attn_q.weight") {
|
||||
heads = p.NumAttentionHeads
|
||||
} else if strings.HasSuffix(name, "attn_k.weight") {
|
||||
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
|
||||
} else {
|
||||
return nil, fmt.Errorf("unknown tensor for repack: %s", name)
|
||||
}
|
||||
|
||||
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.T(0, 2, 1, 3); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Reshape(dims...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Transpose(); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
ts, err := native.SelectF32(n, 1)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var f32s []float32
|
||||
for _, t := range ts {
|
||||
f32s = append(f32s, t...)
|
||||
}
|
||||
|
||||
return f32s, nil
|
||||
}
|
@ -62,10 +62,7 @@ func parseTensors(fsys fs.FS, replacer *strings.Replacer) ([]Tensor, error) {
|
||||
Pattern string
|
||||
Func func(fs.FS, *strings.Replacer, ...string) ([]Tensor, error)
|
||||
}{
|
||||
{"model-*-of-*.safetensors", parseSafetensors},
|
||||
{"model.safetensors", parseSafetensors},
|
||||
{"adapters.safetensors", parseSafetensors},
|
||||
{"adapter_model.safetensors", parseSafetensors},
|
||||
{"*.safetensors", parseSafetensors},
|
||||
{"pytorch_model-*-of-*.bin", parseTorch},
|
||||
{"pytorch_model.bin", parseTorch},
|
||||
{"consolidated.*.pth", parseTorch},
|
||||
|
190
model/models/mistral/model.go
Normal file
190
model/models/mistral/model.go
Normal file
@ -0,0 +1,190 @@
|
||||
package llama
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"math"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/model"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
type Options struct {
|
||||
hiddenSize, numHeads, numKVHeads, headDim int
|
||||
eps, ropeBase, ropeScale float32
|
||||
ropeDim uint32
|
||||
}
|
||||
|
||||
type Model struct {
|
||||
model.Base
|
||||
model.BytePairEncoding
|
||||
|
||||
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
|
||||
Layers []Layer `gguf:"blk"`
|
||||
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
|
||||
Output *nn.Linear `gguf:"output,alt:token_embd"`
|
||||
|
||||
*Options
|
||||
}
|
||||
|
||||
func New(c ml.Config) (model.Model, error) {
|
||||
if !strings.EqualFold(c.String("tokenizer.ggml.model"), "gpt2") {
|
||||
return nil, fmt.Errorf("tokenizer %s not yet supported", c.String("tokenizer.ggml.model"))
|
||||
}
|
||||
|
||||
m := Model{
|
||||
BytePairEncoding: model.NewBytePairEncoding(
|
||||
c.String("tokenizer.ggml.pretokenizer", `[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+|[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n/]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
|
||||
&model.Vocabulary{
|
||||
Values: c.Strings("tokenizer.ggml.tokens"),
|
||||
Types: c.Uints("tokenizer.ggml.token_type"),
|
||||
Merges: c.Strings("tokenizer.ggml.merges"),
|
||||
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
|
||||
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
|
||||
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
|
||||
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
|
||||
},
|
||||
),
|
||||
Layers: make([]Layer, c.Uint("block_count")),
|
||||
Options: &Options{
|
||||
hiddenSize: int(c.Uint("embedding_length")),
|
||||
numHeads: int(c.Uint("attention.head_count")),
|
||||
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
||||
headDim: int(c.Uint("attention.key_length")),
|
||||
eps: c.Float("attention.layer_norm_rms_epsilon"),
|
||||
ropeBase: c.Float("rope.freq_base"),
|
||||
ropeScale: c.Float("rope.freq_scale", 1),
|
||||
ropeDim: c.Uint("rope.dimension_count"),
|
||||
},
|
||||
}
|
||||
|
||||
m.Cache = kvcache.NewCausalCache(m.Shift)
|
||||
|
||||
return &m, nil
|
||||
}
|
||||
|
||||
type SelfAttention struct {
|
||||
Query *nn.Linear `gguf:"attn_q"`
|
||||
Key *nn.Linear `gguf:"attn_k"`
|
||||
Value *nn.Linear `gguf:"attn_v"`
|
||||
Output *nn.Linear `gguf:"attn_output"`
|
||||
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
|
||||
}
|
||||
|
||||
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
||||
batchSize := hiddenState.Dim(1)
|
||||
ropeType := uint32(0)
|
||||
// Get head dimension - use explicit value if available, otherwise calculate
|
||||
headDim := opts.headDim
|
||||
if headDim == 0 {
|
||||
headDim = opts.hiddenSize / opts.numHeads
|
||||
}
|
||||
|
||||
// Query projection and reshape
|
||||
q := sa.Query.Forward(ctx, hiddenState)
|
||||
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
||||
q = q.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
|
||||
|
||||
// Key projection and reshape
|
||||
k := sa.Key.Forward(ctx, hiddenState)
|
||||
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
k = k.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
|
||||
|
||||
// Value projection and reshape
|
||||
v := sa.Value.Forward(ctx, hiddenState)
|
||||
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
||||
|
||||
// Attention computation
|
||||
scaleFactor := 1.0 / math.Sqrt(float64(headDim))
|
||||
kqv := nn.Attention(ctx, q, k, v, scaleFactor, cache)
|
||||
|
||||
// Reshape attention output for final projection
|
||||
outputDim := headDim * opts.numHeads
|
||||
kqv = kqv.Reshape(ctx, outputDim, batchSize)
|
||||
|
||||
// Apply output projection
|
||||
return sa.Output.Forward(ctx, kqv)
|
||||
}
|
||||
|
||||
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
return key.RoPE(ctx, shift, m.Layers[layer].SelfAttention.RopeFactors, uint32(0), m.ropeDim, m.ropeBase, m.ropeScale), nil
|
||||
}
|
||||
|
||||
type MLP struct {
|
||||
Up *nn.Linear `gguf:"ffn_up"`
|
||||
Down *nn.Linear `gguf:"ffn_down"`
|
||||
Gate *nn.Linear `gguf:"ffn_gate"`
|
||||
}
|
||||
|
||||
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
|
||||
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
|
||||
return mlp.Down.Forward(ctx, hiddenState)
|
||||
}
|
||||
|
||||
type Layer struct {
|
||||
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
|
||||
SelfAttention *SelfAttention
|
||||
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
|
||||
MLP *MLP
|
||||
}
|
||||
|
||||
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
||||
residual := hiddenState
|
||||
|
||||
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
|
||||
|
||||
// In the final layer (outputs != nil), optimize by pruning to just the token positions
|
||||
// we need logits for.
|
||||
if outputs != nil {
|
||||
hiddenState = hiddenState.Rows(ctx, outputs)
|
||||
residual = residual.Rows(ctx, outputs)
|
||||
}
|
||||
|
||||
hiddenState = hiddenState.Add(ctx, residual)
|
||||
residual = hiddenState
|
||||
|
||||
hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
|
||||
hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
|
||||
return hiddenState.Add(ctx, residual)
|
||||
}
|
||||
|
||||
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
|
||||
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
|
||||
|
||||
for i, layer := range m.Layers {
|
||||
m.Cache.SetLayer(i)
|
||||
|
||||
var lastLayerOutputs ml.Tensor
|
||||
if i == len(m.Layers)-1 {
|
||||
lastLayerOutputs = outputs
|
||||
}
|
||||
|
||||
hiddenState = layer.Forward(ctx, hiddenState, positions, lastLayerOutputs, m.Cache, m.Options)
|
||||
}
|
||||
|
||||
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
|
||||
return m.Output.Forward(ctx, hiddenState), nil
|
||||
}
|
||||
|
||||
func init() {
|
||||
model.Register("mistral", New)
|
||||
}
|
@ -211,16 +211,10 @@ func filesForModel(path string) ([]string, error) {
|
||||
}
|
||||
|
||||
var files []string
|
||||
if st, _ := glob(filepath.Join(path, "model*.safetensors"), "application/octet-stream"); len(st) > 0 {
|
||||
if st, _ := glob(filepath.Join(path, "*.safetensors"), "application/octet-stream"); len(st) > 0 {
|
||||
// safetensors files might be unresolved git lfs references; skip if they are
|
||||
// covers model-x-of-y.safetensors, model.fp32-x-of-y.safetensors, model.safetensors
|
||||
files = append(files, st...)
|
||||
} else if st, _ := glob(filepath.Join(path, "adapters.safetensors"), "application/octet-stream"); len(st) > 0 {
|
||||
// covers adapters.safetensors
|
||||
files = append(files, st...)
|
||||
} else if st, _ := glob(filepath.Join(path, "adapter_model.safetensors"), "application/octet-stream"); len(st) > 0 {
|
||||
// covers adapter_model.safetensors
|
||||
files = append(files, st...)
|
||||
} else if pt, _ := glob(filepath.Join(path, "pytorch_model*.bin"), "application/zip"); len(pt) > 0 {
|
||||
// pytorch files might also be unresolved git lfs references; skip if they are
|
||||
// covers pytorch_model-x-of-y.bin, pytorch_model.fp32-x-of-y.bin, pytorch_model.bin
|
||||
|
Loading…
x
Reference in New Issue
Block a user