next bert

This commit is contained in:
Michael Yang 2025-01-10 10:32:38 -08:00
parent 95eb87a052
commit cf1dbcfc5a
3 changed files with 243 additions and 10 deletions

View File

@ -23,7 +23,7 @@ import (
"github.com/ollama/ollama/ml"
"golang.org/x/sync/errgroup"
"github.com/ollama/ollama/ml/backend/ggml/ggml/src"
ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
)
type device struct {
@ -249,8 +249,8 @@ func (c *Context) Compute(t ml.Tensor) ml.Tensor {
backend := C.ggml_backend_sched_get_tensor_backend(c.sched, t.(*Tensor).t)
t.(*Tensor).data = make([]byte, C.ggml_nbytes(t.(*Tensor).t))
C.ggml_backend_tensor_get_async(backend, t.(*Tensor).t, unsafe.Pointer(&t.(*Tensor).data[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
t.(*Tensor).bytes = make([]byte, C.ggml_nbytes(t.(*Tensor).t))
C.ggml_backend_tensor_get_async(backend, t.(*Tensor).t, unsafe.Pointer(&t.(*Tensor).bytes[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
return t
}
@ -313,8 +313,8 @@ func (c *Context) Close() error {
}
type Tensor struct {
t *C.struct_ggml_tensor
data []byte
t *C.struct_ggml_tensor
bytes []byte
}
func (t *Tensor) LogValue() slog.Value {
@ -343,17 +343,18 @@ func (t *Tensor) Shape() []int64 {
}
func (t *Tensor) Bytes() []byte {
if bts := C.ggml_get_data(t.t); bts != nil {
return C.GoBytes(bts, C.int(C.ggml_nbytes(t.t)))
if t.bytes == nil {
cbytes := C.ggml_get_data(t.t)
t.bytes = C.GoBytes(unsafe.Pointer(cbytes), C.int(C.ggml_nbytes(t.t)))
}
return nil
return t.bytes
}
func (t *Tensor) Floats() (f32s []float32) {
if t.data != nil {
if t.bytes != nil {
f32s = make([]float32, C.ggml_nelements(t.t))
_ = binary.Read(bytes.NewReader(t.data), binary.LittleEndian, f32s)
_ = binary.Read(bytes.NewReader(t.bytes), binary.LittleEndian, f32s)
}
return

157
model/bert/model.go Normal file
View File

@ -0,0 +1,157 @@
package bert
import (
"fmt"
"math"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
)
func init() {
model.Register("bert", New)
}
type Options struct {
hiddenSize, numHeads int64
eps float32
}
type Model struct {
model.Base
model.BytePairEncoding
TokenEmbedding *nn.Embedding `ggml:"token_embd"`
TypeEmbedding *nn.Embedding `ggml:"type_embd,alt:token_types"`
PositionEmbedding *nn.Embedding `ggml:"position_embd"`
TokenEmbeddingNorm *nn.LayerNorm `ggml:"token_embd_norm"`
Layers []EncoderLayer `ggml:"blk"`
*Options
}
// Forward implements model.Model.
func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
inputs, err := ctx.FromIntSlice(opts.Inputs(), len(opts.Inputs()))
if err != nil {
return nil, err
}
fmt.Println("inputs", inputs.Shape(), ml.Dump(inputs))
types, err := ctx.FromIntSlice([]int32{0}, 1)
if err != nil {
return nil, err
}
fmt.Println("types", types.Shape(), ml.Dump(types))
positions, err := ctx.FromIntSlice(opts.Positions(), len(opts.Positions()))
if err != nil {
return nil, err
}
fmt.Println("positions", positions.Shape(), ml.Dump(positions))
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
fmt.Println("TokenEmbedding.Forward", hiddenState.Shape(), ml.Dump(hiddenState))
return hiddenState, nil
hiddenState = hiddenState.Add(ctx, m.TypeEmbedding.Forward(ctx, types))
fmt.Println("TypeEmbedding.Forward", hiddenState.Shape(), ml.Dump(hiddenState))
hiddenState = hiddenState.Add(ctx, m.PositionEmbedding.Forward(ctx, positions))
fmt.Println("PositionEmbedding.Forward", hiddenState.Shape(), ml.Dump(hiddenState))
hiddenState = m.TokenEmbeddingNorm.Forward(ctx, hiddenState, m.eps)
fmt.Println("TokenEmbeddingNorm.Forward", hiddenState.Shape(), ml.Dump(hiddenState))
for i, layer := range m.Layers {
hiddenState = layer.Forward(ctx, hiddenState, positions, opts.Cache.Sub(i), m.Options)
fmt.Println("EncoderLayer.Forward", i, hiddenState.Shape(), ml.Dump(hiddenState))
}
return hiddenState, nil
}
type EncoderLayer struct {
*SelfAttention
MLPNorm *nn.LayerNorm `ggml:"attn_output_norm"`
*MLP
LayerOutputNorm *nn.LayerNorm `ggml:"ffn_output_norm"`
}
func (e *EncoderLayer) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache model.Cache, opts *Options) ml.Tensor {
residual := hiddenState
hiddenState = e.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
hiddenState = hiddenState.Add(ctx, residual)
residual = hiddenState
hiddenState = e.MLPNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = e.MLP.Forward(ctx, hiddenState, opts)
hiddenState = hiddenState.Add(ctx, residual)
return e.LayerOutputNorm.Forward(ctx, hiddenState, opts.eps)
}
type SelfAttention struct {
Query *nn.Linear `ggml:"attn_q"`
Key *nn.Linear `ggml:"attn_k"`
Value *nn.Linear `ggml:"attn_v"`
Output *nn.Linear `ggml:"attn_output"`
}
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache model.Cache, opts *Options) ml.Tensor {
batchSize := hiddenState.Dim(1)
headDim := opts.hiddenSize / opts.numHeads
query := sa.Query.Forward(ctx, hiddenState)
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
key := sa.Key.Forward(ctx, hiddenState)
key = key.Reshape(ctx, opts.numHeads, headDim, batchSize)
value := sa.Value.Forward(ctx, hiddenState)
value = value.Reshape(ctx, headDim, opts.numHeads, batchSize)
key, value = cache.Put(ctx, key, value, cache.Options)
query = query.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
key = key.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
scores := key.Mulmat(ctx, query)
scores = scores.Scale(ctx, 1.0/math.Sqrt(float64(headDim)))
scores = scores.Softmax(ctx)
attention := value.Mulmat(ctx, scores)
attention = attention.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
attention = attention.Reshape(ctx, opts.hiddenSize, batchSize)
return sa.Output.Forward(ctx, attention)
}
type MLP struct {
Up *nn.Linear `ggml:"ffn_up"`
Down *nn.Linear `ggml:"ffn_down"`
}
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
return mlp.Down.Forward(ctx, mlp.Up.Forward(ctx, hiddenState).GELU(ctx))
}
func New(c ml.Config) (model.Model, error) {
return &Model{
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Uints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
BOS: c.Uint("tokenizer.ggml.bos_token_id"),
EOS: c.Uint("tokenizer.ggml.eos_token_id"),
},
),
Options: &Options{
hiddenSize: int64(c.Uint("embedding_length")),
numHeads: int64(c.Uint("attention.head_count")),
eps: c.Float("attention.layer_norm_epsilon"),
},
}, nil
}

75
model/bert/model_test.go Normal file
View File

@ -0,0 +1,75 @@
package bert_test
import (
"encoding/json"
"os"
"path/filepath"
"strings"
"testing"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model"
)
func blob(t *testing.T, tag string) string {
t.Helper()
home, err := os.UserHomeDir()
if err != nil {
t.Fatal(err)
}
p := filepath.Join(home, ".ollama", "models")
manifestBytes, err := os.ReadFile(filepath.Join(p, "manifests", "registry.ollama.ai", "library", "all-minilm", tag))
if err != nil {
t.Fatal(err)
}
var manifest struct {
Layers []struct {
MediaType string `json:"mediaType"`
Digest string `json:"digest"`
}
}
if err := json.Unmarshal(manifestBytes, &manifest); err != nil {
t.Fatal(err)
}
var digest string
for _, layer := range manifest.Layers {
if layer.MediaType == "application/vnd.ollama.image.model" {
digest = layer.Digest
break
}
}
if digest == "" {
t.Fatal("no model layer found")
}
return filepath.Join(p, "blobs", strings.ReplaceAll(digest, ":", "-"))
}
func TestEmbedding(t *testing.T) {
m, err := model.New(blob(t, "latest"))
if err != nil {
t.Fatal(err)
}
text, err := os.ReadFile(filepath.Join("..", "testdata", "war-and-peace.txt"))
if err != nil {
t.Fatal(err)
}
inputIDs, err := m.(model.TextProcessor).Encode(string(text))
if err != nil {
t.Fatal(err)
}
logit, err := model.Forward(m, model.WithInputIDs(inputIDs))
if err != nil {
t.Fatal(err)
}
t.Log(ml.Dump(logit))
}