sched: Add support for grouping GPUs (#10678)

This patch modifies Ollama to allow grouping GPUs to memory-fit to the requested model, instead of the former algorithm of using one GPU distributing over all available GPUs.

Benefits:
 - Lower amount of (PCIe-)bus communication between GPUs - especially when they are not very high speed
 - Allowing unallocated GPUs to get into power-saving mode.
 - Significantly reduce VRAM allocation when using more than 2 GPUs in a system
 - Due to the reduced memory allocation, you can run more models simultaneously.
This commit is contained in:
Daniel Andersen
2025-08-11 22:59:38 +02:00
committed by GitHub
parent 2c776f0780
commit ea7657b54a

View File

@@ -758,8 +758,6 @@ func (a ByDurationAndName) Less(i, j int) bool {
// If numParallel is <= 0, this will attempt try to optimize parallelism based on available VRAM, and adjust
// opts.NumCtx accordingly
func pickBestFullFitByLibrary(req *LlmRequest, f *ggml.GGML, gpus discover.GpuInfoList, numParallel *int) discover.GpuInfoList {
var estimatedVRAM uint64
var numParallelToTry []int
if *numParallel <= 0 {
// If no specific parallel setting was provided, try larger then smaller, always end with 1
@@ -769,39 +767,51 @@ func pickBestFullFitByLibrary(req *LlmRequest, f *ggml.GGML, gpus discover.GpuIn
}
for _, gl := range gpus.ByLibrary() {
var ok bool
sgl := append(make(discover.GpuInfoList, 0, len(gl)), gl...)
// TODO - potentially sort by performance capability, existing models loaded, etc.
// TODO - Eliminate any GPUs that already have envconfig.MaxRunners loaded on them
// Note: at present, this will favor more VRAM over faster GPU speed in mixed setups
// Note: at present, this will favor most current available VRAM descending and ignoring faster GPU speed in mixed setups
sort.Sort(sort.Reverse(discover.ByFreeMemory(sgl)))
// First attempt to fit the model into a single GPU
for _, p := range numParallelToTry {
req.opts.NumCtx = req.origNumCtx * p
if !envconfig.SchedSpread() {
for _, g := range sgl {
if ok, estimatedVRAM = llm.PredictServerFit([]discover.GpuInfo{g}, f, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts, p); ok {
slog.Info("new model will fit in available VRAM in single GPU, loading", "model", req.model.ModelPath, "gpu", g.ID, "parallel", p, "available", g.FreeMemory, "required", format.HumanBytes2(estimatedVRAM))
if !envconfig.SchedSpread() {
for _, p := range numParallelToTry {
req.opts.NumCtx = req.origNumCtx * p
// Try to pack into as few GPUs as possible, starting from 1 GPU
for numGPUs := 1; numGPUs <= len(sgl); numGPUs++ {
gpuSubset := sgl[:numGPUs]
ok, estimatedVRAM := llm.PredictServerFit(gpuSubset, f, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts, p)
if ok {
slog.Info("new model will fit in available VRAM across minimum required GPUs, loading",
"model", req.model.ModelPath,
"library", sgl[0].Library,
"parallel", p,
"required", format.HumanBytes2(estimatedVRAM),
"gpus", numGPUs)
*numParallel = p
return []discover.GpuInfo{g}
return gpuSubset
}
}
}
}
} else {
// TODO future refinements
// - if multiple Libraries, see if any single GPU in any Library will fit
// - try subsets of GPUs instead of just falling back to 1 or all in a family
// TODO future refinements
// - if multiple Libraries, see if any single GPU in any Library will fit
// - try subsets of GPUs instead of just falling back to 1 or all in a family
// Now try all the GPUs
for _, p := range numParallelToTry {
req.opts.NumCtx = req.origNumCtx * p
if ok, estimatedVRAM = llm.PredictServerFit(sgl, f, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts, p); ok {
slog.Info("new model will fit in available VRAM, loading", "model", req.model.ModelPath, "library", sgl[0].Library, "parallel", p, "required", format.HumanBytes2(estimatedVRAM))
*numParallel = p
return sgl
// Now try all the GPUS (OLLAMA_SCHED_SPREAD is set)
for _, p := range numParallelToTry {
req.opts.NumCtx = req.origNumCtx * p
if ok, estimatedVRAM := llm.PredictServerFit(sgl, f, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts, p); ok {
slog.Info("new model will fit in available VRAM, loading",
"model", req.model.ModelPath,
"library", sgl[0].Library,
"parallel", p,
"required", format.HumanBytes2(estimatedVRAM),
"gpus", len(sgl))
*numParallel = p
return sgl
}
}
}
}