The current splitDim function only operates on tensors that are split evenly which isn't always the case, e.g. a QKV tensor. This change allows the function to be used for arbitrary splits
* fix mllama convert
- transform attn_gate and ffn_gate
- swap attention heads for vision models
* fix mllama
the mlp gate which was applied in the wrong place
Currently, when the backend is created, the tensors are loaded at the
same time, which is a slow operation. This separates them to be two
steps:
- Create backend, including enumerating tensors and memory allocation
- Loading tensor data
This allows more flexibility in managing model loading.
* get eos_token_id from generation_config.json
* refactor
* include both ids and strings in trace
* comments
* remove special case for gemma3 special vocab (#10743)
* Move quantization logic to GGML via new backend
This moves the model aware logic to Go code and calls GGMLs quantization code for model creation.
* Remove "add model quantizations"
This is no longer needed now that quantization is implemented in Go+GGML code directly.
Mistral is a popular research lab making open source models. This updates
the forward pass of llama architecture models to support both llama models
and mistral models by accounting for additional metadata present in mistral
models, and finding the correct dimensions for the output projection.
feat: add new Ollama engine using ggml through cgo
This change introduces a new way to run pretrained models. It introduces 3 high level interfaces and a bunch of smaller helper interfaces to facilitate this.
- `model.Model` defines the interface for a model architecture. Models such as `llama` and `mllama`, which are provided as examples, can implement the model's forward propagation in the `Forward` method. This method will be called to generate completions. This interface can be found in `model/model.go`
- `ml.Backend` defines the interface for a backend tensor library, in this case `ggml`. Among other things, a Backend is responsible for loading a pretrained model into hardware (GPU, CPU, etc) and providing an interface for Models to access loaded tensors. This interface can be found in `ml/backend.go`
- `ml.Tensor` defines the interface for a tensor and tensor operations
This is the first implementation of the new engine. Follow up PRs will implement more features:
- non-greedy sampling (#8410)
- integration with Ollama and KV caching (#8301)
- more model support (#9080) with more coming soon
Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>