mirror of
https://github.com/ollama/ollama.git
synced 2025-11-11 20:57:58 +01:00
* TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch
This will be redone once my branch is merged upstream in llama.cpp
* feat: Update all patches
There are a number that are no longer needed at all:
- 0003-embeddings: Embeddings entirely overhauled on master
- 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely
overhauled on master
- 0019-metal-add-mean-kernel-14267: Merged upstream
- 0020-CUDA-add-mean-operation-14313: Merged upstream
* feat: Sync llama.cpp and ggml
* fix: Update rsync-filter for all moved/new/removed files
* fix: Add files missing from sync
* fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs
* fix: Add ggml files missing from sync
* fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files
* fix: Remove mtmd main cpp files
* fix: Add missing include in sampling_ext.cpp
* fix: Update llama.go to use mtmd instead of clip/llava
* fix: Add patch for mtmd_input_text
* chore: Ignore *.patched in the patch directory
* fix: Fix support for arch-specific ggml-cpu source files with new arrangement
In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific
implementations were split out into a nested tree structure under
ggml-cpu/arch. This conflicts with standard CGO layout where all
arch-specific source files are expected to live in the same directory as
the parent go module and use suffixes based on GOOS and GOARCH. As such,
there were really two options for getting this to work:
1. Add a patch on top of the GGML sync to rearrange the files to match the
GO layout convention
2. Use CGO directives to conditionally include the nested source files in
the compilation units
This commit does (2) in order to minimize the set of changes needed on top
of the upstream file layout. To get this to work, there are two key things
needed:
1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in
the preprocessor directives
2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to
explicitly include the .c|.cpp files for the given architecture from the
nested directory
* fix: Use mtmd_helper to correctly load the bitmap for the image
* fix: Apply patch for mtmd_text_input
* fix: Add missing stb to llama.cpp rsync-filter
* fix: Add sync'ed stb vendored header
* fix: Use c++17 and include vendor for go wrapper modules
* fix: Update patch 0015 for upstream implementation of uuid
* feat: Bump to the latest tip of the branch
* fix: Update patches for bump
* feat: Bump back to the cenral repo and point at the latest master
This includes granite 4 and a number of other model architectures!
* fix: Revert changes to ggml export GPU UUID patch
* fix: Add patch for GGML_VERSION and GGML_COMMIT constants
* feat: Sync all patched code
* build: Include cmake/common.cmake in ggml sync
* build: Add top-level include for GNUINstallDirs in CMakeLists.txt
This is used to populate CMAKE_INSTALL_BINDIR
* fix: Add a patch to avoid power throttling API on non-msvc windows builds
* fix: Sync patch changes for ggml-cpu.c
* feat: Bump llama.cpp to 4a4f42
This picks up support for Kimi K2 and PLaMO-2
* feat: Sync llama.cpp
* fix: Handle multi-chunk image encodings from mtmd
* fix: Re-number patches after merge with `main`
* feat: Bump to 41e78c in the makefile
* fix: Fix Solar and argsort/copy patches after bump
* fix: Remove Gemma3n CUDA Graphs patch
It was implemented upstream:
https://github.com/ggml-org/llama.cpp/pull/14741
* feat: Sync llama.cpp / ggml after latest bump
* build: Remove unnecessary CFLAGS definitions in cpu.go
* fix: Remove unnecessary additions in the rsync-filter
* fix: Remove unused vendored code for chat template parsing
* Revert "fix: Remove Gemma3n CUDA Graphs patch"
This reverts commit d724caced3.
* fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes
https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394
* fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n
* unwind mxfp4 patch
Prepare to bump ggml with their impl for mxfp4
* bump
* fix windows build error
* Convert tensors at load time
Repack the mxfp4 tensors as ggmls kernels expect them to be.
* convert mlp bf16 to f32
* buffer the conversion better
* reshape earlier
* openai swiglu
* add ids
* split qkv, gate_up
* fix nested alt tags
* fast attention
* remove debug messages
* fix lint
* remove redundant test
* remap values only if source/target are different
* add back i32->i32 copy
* refactor cpu quants
* clean up vendor
* update patch instructions
* clean up patches
* remove webgpu
* update mem
* also handle gpt-oss
* revert convert changes
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
770 lines
24 KiB
C++
Vendored
770 lines
24 KiB
C++
Vendored
#define _USE_MATH_DEFINES // for M_PI
|
|
#include "mtmd-audio.h"
|
|
|
|
#include <cmath>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <thread>
|
|
#include <vector>
|
|
#include <fstream>
|
|
#include <algorithm>
|
|
|
|
// most of the code here is copied from whisper.cpp
|
|
|
|
// align x to upper multiple of n
|
|
#define _ALIGN(x, n) ((((x) + (n) - 1) / (n)) * (n))
|
|
|
|
namespace whisper_preprocessor {
|
|
|
|
#define SIN_COS_N_COUNT WHISPER_N_FFT
|
|
namespace {
|
|
struct whisper_global_cache {
|
|
// In FFT, we frequently use sine and cosine operations with the same values.
|
|
// We can use precalculated values to speed up the process.
|
|
float sin_vals[SIN_COS_N_COUNT];
|
|
float cos_vals[SIN_COS_N_COUNT];
|
|
|
|
// Hann window (Use cosf to eliminate difference)
|
|
// ref: https://pytorch.org/docs/stable/generated/torch.hann_window.html
|
|
// ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L147
|
|
float hann_window[WHISPER_N_FFT];
|
|
|
|
whisper_global_cache() {
|
|
fill_sin_cos_table();
|
|
fill_hann_window(sizeof(hann_window)/sizeof(hann_window[0]), true, hann_window);
|
|
}
|
|
|
|
void fill_sin_cos_table() {
|
|
for (int i = 0; i < SIN_COS_N_COUNT; i++) {
|
|
double theta = (2 * M_PI * i) / SIN_COS_N_COUNT;
|
|
sin_vals[i] = sinf(theta);
|
|
cos_vals[i] = cosf(theta);
|
|
}
|
|
}
|
|
|
|
void fill_hann_window(int length, bool periodic, float * output) {
|
|
int offset = -1;
|
|
if (periodic) {
|
|
offset = 0;
|
|
}
|
|
for (int i = 0; i < length; i++) {
|
|
output[i] = 0.5 * (1.0 - cosf((2.0 * M_PI * i) / (length + offset)));
|
|
}
|
|
}
|
|
} global_cache;
|
|
}
|
|
|
|
// naive Discrete Fourier Transform
|
|
// input is real-valued
|
|
// output is complex-valued
|
|
static void dft(const float* in, int N, float* out) {
|
|
const int sin_cos_step = SIN_COS_N_COUNT / N;
|
|
|
|
for (int k = 0; k < N; k++) {
|
|
float re = 0;
|
|
float im = 0;
|
|
|
|
for (int n = 0; n < N; n++) {
|
|
int idx = (k * n * sin_cos_step) % (SIN_COS_N_COUNT); // t = 2*M_PI*k*n/N
|
|
re += in[n]*global_cache.cos_vals[idx]; // cos(t)
|
|
im -= in[n]*global_cache.sin_vals[idx]; // sin(t)
|
|
}
|
|
|
|
out[k*2 + 0] = re;
|
|
out[k*2 + 1] = im;
|
|
}
|
|
}
|
|
|
|
// Cooley-Tukey FFT
|
|
// poor man's implementation - use something better
|
|
// input is real-valued
|
|
// output is complex-valued
|
|
static void fft(float* in, int N, float* out) {
|
|
if (N == 1) {
|
|
out[0] = in[0];
|
|
out[1] = 0;
|
|
return;
|
|
}
|
|
|
|
const int half_N = N / 2;
|
|
if (N - half_N*2 == 1) {
|
|
dft(in, N, out);
|
|
return;
|
|
}
|
|
|
|
float* even = in + N;
|
|
for (int i = 0; i < half_N; ++i) {
|
|
even[i]= in[2*i];
|
|
}
|
|
float* even_fft = out + 2 * N;
|
|
fft(even, half_N, even_fft);
|
|
|
|
float* odd = even;
|
|
for (int i = 0; i < half_N; ++i) {
|
|
odd[i] = in[2*i + 1];
|
|
}
|
|
float* odd_fft = even_fft + N;
|
|
fft(odd, half_N, odd_fft);
|
|
|
|
const int sin_cos_step = SIN_COS_N_COUNT / N;
|
|
for (int k = 0; k < half_N; k++) {
|
|
int idx = k * sin_cos_step; // t = 2*M_PI*k/N
|
|
float re = global_cache.cos_vals[idx]; // cos(t)
|
|
float im = -global_cache.sin_vals[idx]; // sin(t)
|
|
|
|
float re_odd = odd_fft[2*k + 0];
|
|
float im_odd = odd_fft[2*k + 1];
|
|
|
|
out[2*k + 0] = even_fft[2*k + 0] + re*re_odd - im*im_odd;
|
|
out[2*k + 1] = even_fft[2*k + 1] + re*im_odd + im*re_odd;
|
|
|
|
out[2*(k + half_N) + 0] = even_fft[2*k + 0] - re*re_odd + im*im_odd;
|
|
out[2*(k + half_N) + 1] = even_fft[2*k + 1] - re*im_odd - im*re_odd;
|
|
}
|
|
}
|
|
|
|
static void log_mel_spectrogram_worker_thread(int ith, const float * hann, const std::vector<float> & samples,
|
|
int n_samples, int frame_size, int frame_step, int n_threads,
|
|
const whisper_filters & filters, whisper_mel & mel) {
|
|
std::vector<float> fft_in(frame_size * 2, 0.0);
|
|
std::vector<float> fft_out(frame_size * 2 * 2 * 2);
|
|
|
|
int n_fft = filters.n_fft;
|
|
int i = ith;
|
|
|
|
// make sure n_fft == 1 + (WHISPER_N_FFT / 2), bin_0 to bin_nyquist
|
|
WHISPER_ASSERT(n_fft == 1 + (frame_size / 2));
|
|
|
|
// calculate FFT only when fft_in are not all zero
|
|
for (; i < std::min(n_samples / frame_step + 1, mel.n_len); i += n_threads) {
|
|
const int offset = i * frame_step;
|
|
|
|
// apply Hann window (~10% faster)
|
|
for (int j = 0; j < std::min(frame_size, n_samples - offset); j++) {
|
|
fft_in[j] = hann[j] * samples[offset + j];
|
|
}
|
|
|
|
// fill the rest with zeros
|
|
if (n_samples - offset < frame_size) {
|
|
std::fill(fft_in.begin() + (n_samples - offset), fft_in.end(), 0.0);
|
|
}
|
|
|
|
// FFT
|
|
fft(fft_in.data(), frame_size, fft_out.data());
|
|
|
|
// Calculate modulus^2 of complex numbers
|
|
// Use pow(fft_out[2 * j + 0], 2) + pow(fft_out[2 * j + 1], 2) causes inference quality problem? Interesting.
|
|
for (int j = 0; j < n_fft; j++) {
|
|
fft_out[j] = (fft_out[2 * j + 0] * fft_out[2 * j + 0] + fft_out[2 * j + 1] * fft_out[2 * j + 1]);
|
|
}
|
|
|
|
// mel spectrogram
|
|
for (int j = 0; j < mel.n_mel; j++) {
|
|
double sum = 0.0;
|
|
// unroll loop (suggested by GH user @lunixbochs)
|
|
int k = 0;
|
|
for (k = 0; k < n_fft - 3; k += 4) {
|
|
sum +=
|
|
fft_out[k + 0] * filters.data[j * n_fft + k + 0] +
|
|
fft_out[k + 1] * filters.data[j * n_fft + k + 1] +
|
|
fft_out[k + 2] * filters.data[j * n_fft + k + 2] +
|
|
fft_out[k + 3] * filters.data[j * n_fft + k + 3];
|
|
}
|
|
// handle n_fft remainder
|
|
for (; k < n_fft; k++) {
|
|
sum += fft_out[k] * filters.data[j * n_fft + k];
|
|
}
|
|
sum = log10(std::max(sum, 1e-10));
|
|
mel.data[j * mel.n_len + i] = sum;
|
|
}
|
|
}
|
|
|
|
// Otherwise fft_out are all zero
|
|
double sum = log10(1e-10);
|
|
for (; i < mel.n_len; i += n_threads) {
|
|
for (int j = 0; j < mel.n_mel; j++) {
|
|
mel.data[j * mel.n_len + i] = sum;
|
|
}
|
|
}
|
|
}
|
|
|
|
// ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L110-L157
|
|
static bool log_mel_spectrogram(
|
|
const float * samples,
|
|
const int n_samples,
|
|
const int /*sample_rate*/,
|
|
const int frame_size,
|
|
const int frame_step,
|
|
const int n_mel,
|
|
const int n_threads,
|
|
const whisper_filters & filters,
|
|
const bool debug,
|
|
whisper_mel & mel) {
|
|
//const int64_t t_start_us = ggml_time_us();
|
|
|
|
// Hann window
|
|
WHISPER_ASSERT(frame_size == WHISPER_N_FFT && "Unsupported frame_size");
|
|
const float * hann = global_cache.hann_window;
|
|
|
|
// Calculate the length of padding
|
|
int64_t stage_1_pad = WHISPER_SAMPLE_RATE * 30;
|
|
int64_t stage_2_pad = frame_size / 2;
|
|
|
|
// Initialize a vector and copy data from C array to it.
|
|
std::vector<float> samples_padded;
|
|
samples_padded.resize(n_samples + stage_1_pad + stage_2_pad * 2);
|
|
std::copy(samples, samples + n_samples, samples_padded.begin() + stage_2_pad);
|
|
|
|
// pad 30 seconds of zeros at the end of audio (480,000 samples) + reflective pad 200 samples at the end of audio
|
|
std::fill(samples_padded.begin() + n_samples + stage_2_pad, samples_padded.begin() + n_samples + stage_1_pad + 2 * stage_2_pad, 0);
|
|
|
|
// reflective pad 200 samples at the beginning of audio
|
|
std::reverse_copy(samples + 1, samples + 1 + stage_2_pad, samples_padded.begin());
|
|
|
|
mel.n_mel = n_mel;
|
|
// https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/SpectralOps.cpp#L936
|
|
// Calculate number of frames + remove the last frame
|
|
mel.n_len = (samples_padded.size() - frame_size) / frame_step;
|
|
// Calculate semi-padded sample length to ensure compatibility
|
|
mel.n_len_org = 1 + (n_samples + stage_2_pad - frame_size) / frame_step;
|
|
mel.data.resize(mel.n_mel * mel.n_len);
|
|
|
|
{
|
|
std::vector<std::thread> workers(n_threads - 1);
|
|
for (int iw = 0; iw < n_threads - 1; ++iw) {
|
|
workers[iw] = std::thread(
|
|
log_mel_spectrogram_worker_thread, iw + 1, hann, std::cref(samples_padded),
|
|
n_samples + stage_2_pad, frame_size, frame_step, n_threads,
|
|
std::cref(filters), std::ref(mel));
|
|
}
|
|
|
|
// main thread
|
|
log_mel_spectrogram_worker_thread(0, hann, samples_padded, n_samples + stage_2_pad, frame_size, frame_step, n_threads, filters, mel);
|
|
|
|
for (int iw = 0; iw < n_threads - 1; ++iw) {
|
|
workers[iw].join();
|
|
}
|
|
}
|
|
|
|
// clamping and normalization
|
|
double mmax = -1e20;
|
|
for (int i = 0; i < mel.n_mel*mel.n_len; i++) {
|
|
if (mel.data[i] > mmax) {
|
|
mmax = mel.data[i];
|
|
}
|
|
}
|
|
|
|
mmax -= 8.0;
|
|
|
|
for (int i = 0; i < mel.n_mel*mel.n_len; i++) {
|
|
if (mel.data[i] < mmax) {
|
|
mel.data[i] = mmax;
|
|
}
|
|
|
|
mel.data[i] = (mel.data[i] + 4.0)/4.0;
|
|
}
|
|
|
|
// Dump log_mel_spectrogram
|
|
if (debug) {
|
|
std::ofstream outFile("log_mel_spectrogram.json");
|
|
outFile << "[";
|
|
for (uint64_t i = 0; i < mel.data.size() - 1; i++) {
|
|
outFile << mel.data[i] << ", ";
|
|
}
|
|
outFile << mel.data[mel.data.size() - 1] << "]";
|
|
outFile.close();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool preprocess_audio(
|
|
const float * samples,
|
|
size_t n_samples,
|
|
const whisper_filters & filters,
|
|
std::vector<whisper_mel> & output) {
|
|
|
|
if (n_samples == 0) {
|
|
// empty audio
|
|
return false;
|
|
}
|
|
|
|
whisper_mel out_full;
|
|
bool ok = log_mel_spectrogram(
|
|
samples,
|
|
n_samples,
|
|
COMMON_SAMPLE_RATE,
|
|
WHISPER_N_FFT,
|
|
WHISPER_HOP_LENGTH,
|
|
filters.n_mel,
|
|
4, // n_threads
|
|
filters,
|
|
false, // debug
|
|
out_full);
|
|
if (!ok) {
|
|
return false;
|
|
}
|
|
|
|
// because the cgraph in clip.cpp only accepts 3000 frames each, we need to split the mel
|
|
// we always expect the mel to have 3000 silent frames at the end
|
|
// printf("n_len %d\n", out_full.n_len);
|
|
const size_t frames_per_chunk = 3000;
|
|
GGML_ASSERT((size_t)out_full.n_len > frames_per_chunk);
|
|
for (size_t off = 0; off < (size_t)out_full.n_len; off += frames_per_chunk) {
|
|
int n_len = std::min(frames_per_chunk, (size_t)out_full.n_len - off);
|
|
if ((size_t)n_len < frames_per_chunk) {
|
|
break; // last uncomplete chunk will always be a padded chunk, safe to ignore
|
|
}
|
|
|
|
whisper_mel out_chunk;
|
|
out_chunk.n_len = n_len;
|
|
out_chunk.n_mel = out_full.n_mel;
|
|
out_chunk.n_len_org = out_full.n_mel; // unused
|
|
out_chunk.data.reserve(out_chunk.n_mel * out_chunk.n_len);
|
|
|
|
for (int i = 0; i < out_full.n_mel; i++) {
|
|
auto src = out_full.data.begin() + i*out_full.n_len + off;
|
|
out_chunk.data.insert(out_chunk.data.end(), src, src + frames_per_chunk);
|
|
}
|
|
|
|
output.push_back(std::move(out_chunk));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
} // namespace whisper_preprocessor
|
|
|
|
|
|
// precalculated mel filter banks
|
|
// values are multiplied by 1000.0 to save space, and will be divided by 1000.0 in the end of the function
|
|
//
|
|
// generated from python code:
|
|
//
|
|
// from numpy import load
|
|
// data = load('mel_filters.npz')
|
|
// lst = data.files
|
|
// for item in lst:
|
|
// print(item)
|
|
// print(data[item].shape)
|
|
// n_mel = data[item].shape[0]
|
|
// n_fft = data[item].shape[1]
|
|
// for i, row in enumerate(data[item]):
|
|
// for j, val in enumerate(row):
|
|
// val = val * 1000.0
|
|
// if val != 0:
|
|
// print(f"data[{i*n_fft + j}] = {val:.6f};")
|
|
|
|
namespace whisper_precalc_filters {
|
|
|
|
whisper_preprocessor::whisper_filters get_128_bins() {
|
|
whisper_preprocessor::whisper_filters filters;
|
|
filters.n_mel = 128;
|
|
filters.n_fft = 201;
|
|
std::vector data(filters.n_mel * filters.n_fft, 0.0f);
|
|
|
|
data[1] = 12.37398665;
|
|
data[202] = 30.39256483;
|
|
data[404] = 24.74797331;
|
|
data[605] = 18.01857911;
|
|
data[807] = 37.12195903;
|
|
data[1008] = 5.64459199;
|
|
data[1009] = 6.72939420;
|
|
data[1210] = 36.03715822;
|
|
data[1412] = 19.10337992;
|
|
data[1613] = 23.66316877;
|
|
data[1815] = 31.47736564;
|
|
data[2016] = 11.28918398;
|
|
data[2017] = 1.08480197;
|
|
data[2218] = 41.68175161;
|
|
data[2420] = 13.45878839;
|
|
data[2621] = 29.30776216;
|
|
data[2823] = 25.83277412;
|
|
data[3024] = 16.93377644;
|
|
data[3226] = 38.20675984;
|
|
data[3427] = 4.55979025;
|
|
data[3428] = 7.81419594;
|
|
data[3629] = 34.95235741;
|
|
data[3831] = 20.18818259;
|
|
data[4032] = 22.57836796;
|
|
data[4234] = 32.56217018;
|
|
data[4435] = 10.20438317;
|
|
data[4436] = 2.16960395;
|
|
data[4637] = 40.59694707;
|
|
data[4839] = 14.54358920;
|
|
data[5040] = 28.22295949;
|
|
data[5242] = 26.91757679;
|
|
data[5443] = 15.84897563;
|
|
data[5645] = 39.29156065;
|
|
data[5846] = 3.47498828;
|
|
data[5847] = 8.89899861;
|
|
data[6048] = 33.86755288;
|
|
data[6250] = 21.27298526;
|
|
data[6451] = 21.49356715;
|
|
data[6653] = 33.64697099;
|
|
data[6854] = 9.11958050;
|
|
data[6855] = 3.25440569;
|
|
data[7056] = 39.51214626;
|
|
data[7258] = 15.62839188;
|
|
data[7459] = 27.13815868;
|
|
data[7661] = 28.00237760;
|
|
data[7862] = 14.76417296;
|
|
data[8064] = 40.37636518;
|
|
data[8265] = 2.38068704;
|
|
data[8266] = 10.20263787;
|
|
data[8467] = 31.61146119;
|
|
data[8669] = 24.54700135;
|
|
data[8870] = 15.32919332;
|
|
data[8871] = 1.66583748;
|
|
data[9072] = 36.72905266;
|
|
data[9274] = 20.09709924;
|
|
data[9475] = 16.93102531;
|
|
data[9476] = 2.90265540;
|
|
data[9677] = 32.84499049;
|
|
data[9879] = 23.52004871;
|
|
data[10080] = 11.03894413;
|
|
data[10081] = 10.72582975;
|
|
data[10282] = 22.71829173;
|
|
data[10484] = 32.27872774;
|
|
data[10685] = 0.11626833;
|
|
data[10686] = 22.85348251;
|
|
data[10887] = 8.56344029;
|
|
data[10888] = 14.97978810;
|
|
data[11089] = 15.51398356;
|
|
data[11090] = 8.51490628;
|
|
data[11291] = 21.10680379;
|
|
data[11292] = 3.32652032;
|
|
data[11493] = 25.47064796;
|
|
data[11695] = 27.35907957;
|
|
data[11896] = 0.65853616;
|
|
data[11897] = 23.83812517;
|
|
data[12098] = 3.44359246;
|
|
data[12099] = 21.22455277;
|
|
data[12300] = 5.35842171;
|
|
data[12301] = 19.42555793;
|
|
data[12502] = 6.49324711;
|
|
data[12503] = 18.35542172;
|
|
data[12704] = 6.93138083;
|
|
data[12705] = 17.93504693;
|
|
data[12906] = 6.74968259;
|
|
data[12907] = 18.09151843;
|
|
data[13108] = 6.01899112;
|
|
data[13109] = 18.75767298;
|
|
data[13310] = 4.80452832;
|
|
data[13311] = 19.87172849;
|
|
data[13512] = 3.16627859;
|
|
data[13513] = 21.37690969;
|
|
data[13514] = 1.25317345;
|
|
data[13714] = 1.15934468;
|
|
data[13715] = 20.80361731;
|
|
data[13716] = 4.04486805;
|
|
data[13917] = 17.55363122;
|
|
data[13918] = 7.08320038;
|
|
data[14119] = 14.07538634;
|
|
data[14120] = 10.32655034;
|
|
data[14321] = 10.40921453;
|
|
data[14322] = 13.73696327;
|
|
data[14523] = 6.59187697;
|
|
data[14524] = 17.27988198;
|
|
data[14525] = 1.46804214;
|
|
data[14725] = 2.65681883;
|
|
data[14726] = 18.09193194;
|
|
data[14727] = 5.85655728;
|
|
data[14928] = 13.34277913;
|
|
data[14929] = 10.28267574;
|
|
data[15130] = 8.56800377;
|
|
data[15131] = 14.72230814;
|
|
data[15132] = 1.04039861;
|
|
data[15332] = 3.79085587;
|
|
data[15333] = 17.14678481;
|
|
data[15334] = 6.11609267;
|
|
data[15535] = 11.75929047;
|
|
data[15536] = 11.13393717;
|
|
data[15737] = 6.43857848;
|
|
data[15738] = 16.07806236;
|
|
data[15739] = 4.23917221;
|
|
data[15939] = 1.19989377;
|
|
data[15940] = 12.75671553;
|
|
data[15941] = 9.65298992;
|
|
data[16142] = 7.06935255;
|
|
data[16143] = 14.94054683;
|
|
data[16144] = 4.19024844;
|
|
data[16344] = 1.51483389;
|
|
data[16345] = 12.00899947;
|
|
data[16346] = 9.84823331;
|
|
data[16547] = 6.10224018;
|
|
data[16548] = 15.33857174;
|
|
data[16549] = 5.57676842;
|
|
data[16749] = 0.36827257;
|
|
data[16750] = 9.89749376;
|
|
data[16751] = 11.35340426;
|
|
data[16752] = 2.05122307;
|
|
data[16952] = 3.89297144;
|
|
data[16953] = 12.97352277;
|
|
data[16954] = 8.06631614;
|
|
data[17155] = 6.74493238;
|
|
data[17156] = 13.85874674;
|
|
data[17157] = 5.41190524;
|
|
data[17357] = 0.74220158;
|
|
data[17358] = 8.98779090;
|
|
data[17359] = 11.37871388;
|
|
data[17360] = 3.32958088;
|
|
data[17560] = 2.82313535;
|
|
data[17561] = 10.68049297;
|
|
data[17562] = 9.43340641;
|
|
data[17563] = 1.76325557;
|
|
data[17763] = 4.39018616;
|
|
data[17764] = 11.87758986;
|
|
data[17765] = 7.97005836;
|
|
data[17766] = 0.66104700;
|
|
data[17966] = 5.49466675;
|
|
data[17967] = 12.62953598;
|
|
data[17968] = 6.93987962;
|
|
data[18169] = 6.18401915;
|
|
data[18170] = 12.93473132;
|
|
data[18171] = 6.29778765;
|
|
data[18371] = 0.02325210;
|
|
data[18372] = 6.50206627;
|
|
data[18373] = 12.32661773;
|
|
data[18374] = 6.00216538;
|
|
data[18574] = 0.31548753;
|
|
data[18575] = 6.48925547;
|
|
data[18576] = 12.04130240;
|
|
data[18577] = 6.01462880;
|
|
data[18777] = 0.29979556;
|
|
data[18778] = 6.18288014;
|
|
data[18779] = 12.04272825;
|
|
data[18780] = 6.29981188;
|
|
data[18781] = 0.55689598;
|
|
data[18980] = 0.01120471;
|
|
data[18981] = 5.61729167;
|
|
data[18982] = 11.22337859;
|
|
data[18983] = 6.82516303;
|
|
data[18984] = 1.35264499;
|
|
data[19184] = 4.82410006;
|
|
data[19185] = 10.16623247;
|
|
data[19186] = 7.56075513;
|
|
data[19187] = 2.34590308;
|
|
data[19387] = 3.83235747;
|
|
data[19388] = 8.92296247;
|
|
data[19389] = 8.47910438;
|
|
data[19390] = 3.50978645;
|
|
data[19590] = 2.66873185;
|
|
data[19591] = 7.51965167;
|
|
data[19592] = 9.55500547;
|
|
data[19593] = 4.81966138;
|
|
data[19594] = 0.08431751;
|
|
data[19793] = 1.35767367;
|
|
data[19794] = 5.98019501;
|
|
data[19795] = 10.60271543;
|
|
data[19796] = 6.25298498;
|
|
data[19797] = 1.74059917;
|
|
data[19997] = 4.32644226;
|
|
data[19998] = 8.73131864;
|
|
data[19999] = 7.78916525;
|
|
data[20000] = 3.48923868;
|
|
data[20200] = 2.57835095;
|
|
data[20201] = 6.77582854;
|
|
data[20202] = 9.40941647;
|
|
data[20203] = 5.31194592;
|
|
data[20204] = 1.21447595;
|
|
data[20403] = 0.75411191;
|
|
data[20404] = 4.75395704;
|
|
data[20405] = 8.75380263;
|
|
data[20406] = 7.19209015;
|
|
data[20407] = 3.28754401;
|
|
data[20607] = 2.68179690;
|
|
data[20608] = 6.49331464;
|
|
data[20609] = 9.11457930;
|
|
data[20610] = 5.39387390;
|
|
data[20611] = 1.67316827;
|
|
data[20810] = 0.57394296;
|
|
data[20811] = 4.20600036;
|
|
data[20812] = 7.83805829;
|
|
data[20813] = 7.52023002;
|
|
data[20814] = 3.97470826;
|
|
data[20815] = 0.42918732;
|
|
data[21014] = 1.90464477;
|
|
data[21015] = 5.36569161;
|
|
data[21016] = 8.82673822;
|
|
data[21017] = 6.27609482;
|
|
data[21018] = 2.89750961;
|
|
data[21218] = 2.89885257;
|
|
data[21219] = 6.19694078;
|
|
data[21220] = 8.56699049;
|
|
data[21221] = 5.34748193;
|
|
data[21222] = 2.12797290;
|
|
data[21421] = 0.44750227;
|
|
data[21422] = 3.59030394;
|
|
data[21423] = 6.73310598;
|
|
data[21424] = 7.77023612;
|
|
data[21425] = 4.70231380;
|
|
data[21426] = 1.63439126;
|
|
data[21625] = 1.01536023;
|
|
data[21626] = 4.01018746;
|
|
data[21627] = 7.00501446;
|
|
data[21628] = 7.23442994;
|
|
data[21629] = 4.31095669;
|
|
data[21630] = 1.38748321;
|
|
data[21829] = 1.33348850;
|
|
data[21830] = 4.18730825;
|
|
data[21831] = 7.04112789;
|
|
data[21832] = 6.93188375;
|
|
data[21833] = 4.14605811;
|
|
data[21834] = 1.36023236;
|
|
data[22033] = 1.42879714;
|
|
data[22034] = 4.14824858;
|
|
data[22035] = 6.86769979;
|
|
data[22036] = 6.83705276;
|
|
data[22037] = 4.18239459;
|
|
data[22038] = 1.52773573;
|
|
data[22237] = 1.32610439;
|
|
data[22238] = 3.91751388;
|
|
data[22239] = 6.50892360;
|
|
data[22240] = 6.92639686;
|
|
data[22241] = 4.39672917;
|
|
data[22242] = 1.86706171;
|
|
data[22441] = 1.04827771;
|
|
data[22442] = 3.51767405;
|
|
data[22443] = 5.98707050;
|
|
data[22444] = 7.17824046;
|
|
data[22445] = 4.76767914;
|
|
data[22446] = 2.35711760;
|
|
data[22645] = 0.61636406;
|
|
data[22646] = 2.96949223;
|
|
data[22647] = 5.32262027;
|
|
data[22648] = 7.57265091;
|
|
data[22649] = 5.27558755;
|
|
data[22650] = 2.97852419;
|
|
data[22651] = 0.68146095;
|
|
data[22849] = 0.04971400;
|
|
data[22850] = 2.29204819;
|
|
data[22851] = 4.53438237;
|
|
data[22852] = 6.77671656;
|
|
data[22853] = 5.90240723;
|
|
data[22854] = 3.71349836;
|
|
data[22855] = 1.52458926;
|
|
data[23054] = 1.50285335;
|
|
data[23055] = 3.63961048;
|
|
data[23056] = 5.77636715;
|
|
data[23057] = 6.63159089;
|
|
data[23058] = 4.54574358;
|
|
data[23059] = 2.45989650;
|
|
data[23060] = 0.37404924;
|
|
data[23258] = 0.61795861;
|
|
data[23259] = 2.65410915;
|
|
data[23260] = 4.69025923;
|
|
data[23261] = 6.72641024;
|
|
data[23262] = 5.46034705;
|
|
data[23263] = 3.47270933;
|
|
data[23264] = 1.48507138;
|
|
data[23463] = 1.59233576;
|
|
data[23464] = 3.53261665;
|
|
data[23465] = 5.47289755;
|
|
data[23466] = 6.44368259;
|
|
data[23467] = 4.54962999;
|
|
data[23468] = 2.65557761;
|
|
data[23469] = 0.76152512;
|
|
data[23667] = 0.46749352;
|
|
data[23668] = 2.31641904;
|
|
data[23669] = 4.16534441;
|
|
data[23670] = 6.01426978;
|
|
data[23671] = 5.67844696;
|
|
data[23672] = 3.87357362;
|
|
data[23673] = 2.06870004;
|
|
data[23674] = 0.26382666;
|
|
data[23872] = 1.05349103;
|
|
data[23873] = 2.81536230;
|
|
data[23874] = 4.57723346;
|
|
data[23875] = 6.33910485;
|
|
data[23876] = 5.12815686;
|
|
data[23877] = 3.40826320;
|
|
data[23878] = 1.68837002;
|
|
data[24077] = 1.43350090;
|
|
data[24078] = 3.11241671;
|
|
data[24079] = 4.79133241;
|
|
data[24080] = 6.40943693;
|
|
data[24081] = 4.77052201;
|
|
data[24082] = 3.13160778;
|
|
data[24083] = 1.49269309;
|
|
data[24281] = 0.02932359;
|
|
data[24282] = 1.62918994;
|
|
data[24283] = 3.22905602;
|
|
data[24284] = 4.82892245;
|
|
data[24285] = 6.14671456;
|
|
data[24286] = 4.58496623;
|
|
data[24287] = 3.02321767;
|
|
data[24288] = 1.46146910;
|
|
data[24486] = 0.13601698;
|
|
data[24487] = 1.66055572;
|
|
data[24488] = 3.18509457;
|
|
data[24489] = 4.70963307;
|
|
data[24490] = 6.04072399;
|
|
data[24491] = 4.55250870;
|
|
data[24492] = 3.06429295;
|
|
data[24493] = 1.57607743;
|
|
data[24494] = 0.08786193;
|
|
data[24691] = 0.09328097;
|
|
data[24692] = 1.54603878;
|
|
data[24693] = 2.99879676;
|
|
data[24694] = 4.45155473;
|
|
data[24695] = 5.90431225;
|
|
data[24696] = 4.65566106;
|
|
data[24697] = 3.23751615;
|
|
data[24698] = 1.81937125;
|
|
data[24699] = 0.40122634;
|
|
data[24897] = 1.30262633;
|
|
data[24898] = 2.68698297;
|
|
data[24899] = 4.07133950;
|
|
data[24900] = 5.45569602;
|
|
data[24901] = 4.87832492;
|
|
data[24902] = 3.52695142;
|
|
data[24903] = 2.17557792;
|
|
data[24904] = 0.82420459;
|
|
data[25102] = 0.94595028;
|
|
data[25103] = 2.26512621;
|
|
data[25104] = 3.58430226;
|
|
data[25105] = 4.90347855;
|
|
data[25106] = 5.20569785;
|
|
data[25107] = 3.91795207;
|
|
data[25108] = 2.63020652;
|
|
data[25109] = 1.34246063;
|
|
data[25110] = 0.05471494;
|
|
data[25307] = 0.49037894;
|
|
data[25308] = 1.74744334;
|
|
data[25309] = 3.00450763;
|
|
data[25310] = 4.26157191;
|
|
data[25311] = 5.51863620;
|
|
data[25312] = 4.39707236;
|
|
data[25313] = 3.16995848;
|
|
data[25314] = 1.94284460;
|
|
data[25315] = 0.71573065;
|
|
data[25513] = 1.14698056;
|
|
data[25514] = 2.34485767;
|
|
data[25515] = 3.54273478;
|
|
data[25516] = 4.74061165;
|
|
data[25517] = 4.95198462;
|
|
data[25518] = 3.78264743;
|
|
data[25519] = 2.61331047;
|
|
data[25520] = 1.44397374;
|
|
data[25521] = 0.27463681;
|
|
data[25718] = 0.47569509;
|
|
data[25719] = 1.61717169;
|
|
data[25720] = 2.75864848;
|
|
data[25721] = 3.90012516;
|
|
data[25722] = 5.04160160;
|
|
data[25723] = 4.45712078;
|
|
data[25724] = 3.34284059;
|
|
data[25725] = 2.22856039;
|
|
data[25726] = 1.11428020;
|
|
|
|
for (auto & val : data) {
|
|
val /= 1000.0f;
|
|
}
|
|
|
|
filters.data = std::move(data);
|
|
return filters;
|
|
}
|
|
|
|
} // namespace whisper_precalc_filters
|