Files
ollama/model/models/qwen25vl/model_vision.go
Jesse Gross 1f371ea92f ml: Panic rather than return error on tensor allocation failure
FromFloatSlice and FromIntSlice return an error if the shape doesn't
match the passed data or if memory can't be allocated. Since these
are inputs, the memory being allocated is system memory rather than VRAM.

In many cases, the caller can't really handle the error and panics.

Empty and Zeros directly panic if they can't allocate memory.

This makes things consistent by panicing for the first two cases,
removing a fair amount of error handling code. This is also consistent
with how Go typically handles these situations.
2025-05-22 14:38:09 -07:00

380 lines
14 KiB
Go

package qwen25vl
import (
"math"
"slices"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
)
// We only support batch size of 1
var batchSize int = 1
func rotateHalf(ctx ml.Context, t ml.Tensor) ml.Tensor {
x1 := t.View(ctx, 0, t.Dim(0)/2, t.Stride(1), t.Dim(1), t.Stride(2), t.Dim(2), t.Stride(3), t.Dim(3))
x2 := t.View(ctx, t.Stride(0)*t.Dim(0)/2, t.Dim(0)/2, t.Stride(1), t.Dim(1), t.Stride(2), t.Dim(2), t.Stride(3), t.Dim(3)).Contiguous(ctx)
return x2.Neg(ctx).Concat(ctx, x1, 0)
}
func applyRotaryPositionalEmbedding(ctx ml.Context, t, cos, sin ml.Tensor) ml.Tensor {
return t.Mul(ctx, cos).Add(ctx, rotateHalf(ctx, t).Mul(ctx, sin))
}
func blockDiagonalMask(ctx ml.Context, seqLength int, bounds []int, numHeads int) ml.Tensor {
// Create a flat slice for the mask (all -inf initially to block all attention)
flat := make([]float32, seqLength*seqLength)
for i := range flat {
flat[i] = float32(math.Inf(-1)) // Negative infinity to block attention
}
// Fill in the mask with zeros for tokens that CAN attend to each other
for i := 1; i < len(bounds); i++ {
start := bounds[i-1]
end := bounds[i]
// Enable attention within this sequence block by setting values to 0
for row := start; row < end; row++ {
for col := start; col < end; col++ {
idx := row*seqLength + col
flat[idx] = 0.0 // 0 allows attention, -inf blocks it
}
}
}
mask := ctx.Input().FromFloatSlice(flat, seqLength, seqLength)
// Reshape to match [seqLength, seqLength, 1] for broadcasting
mask = mask.Reshape(ctx, seqLength, seqLength, 1)
return mask
}
type VisionSelfAttention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_out"`
}
func (sa *VisionSelfAttention) Forward(ctx ml.Context, hiddenStates, cos, sin, mask ml.Tensor, opts *VisionModelOptions) ml.Tensor {
query := sa.Query.Forward(ctx, hiddenStates)
key := sa.Key.Forward(ctx, hiddenStates)
value := sa.Value.Forward(ctx, hiddenStates)
query = query.Reshape(ctx, opts.headDim, opts.numHeads, query.Dim(1), batchSize)
key = key.Reshape(ctx, opts.headDim, opts.numHeads, key.Dim(1), batchSize)
value = value.Reshape(ctx, opts.headDim, opts.numHeads, value.Dim(1), batchSize)
query = applyRotaryPositionalEmbedding(ctx, query, cos, sin)
key = applyRotaryPositionalEmbedding(ctx, key, cos, sin)
// Scale factor for scaled dot-product attention
scale := 1.0 / math.Sqrt(float64(opts.headDim))
// Scaled dot-product attention
query = query.Permute(ctx, 0, 2, 1, 3)
key = key.Permute(ctx, 0, 2, 1, 3)
value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
kq := key.MulmatFullPrec(ctx, query)
kq = kq.Scale(ctx, scale)
if mask != nil {
kq = kq.Add(ctx, mask)
}
kq = kq.Softmax(ctx)
kqv := value.Mulmat(ctx, kq)
attention := kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
attention = attention.Reshape(ctx, opts.hiddenSize, attention.Dim(2), batchSize)
return sa.Output.Forward(ctx, attention)
}
// VisionMLP implements the multi-layer perceptron
type VisionMLP struct {
Gate *nn.Linear `gguf:"ffn_gate"`
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
}
func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *VisionModelOptions) ml.Tensor {
// Using activation as specified in config (likely GELU or SiLU/Swish)
gateOutput := mlp.Gate.Forward(ctx, hiddenStates)
upOutput := mlp.Up.Forward(ctx, hiddenStates)
hiddenStates = gateOutput.SILU(ctx).Mul(ctx, upOutput)
return mlp.Down.Forward(ctx, hiddenStates)
}
type VisionEncoderLayer struct {
Norm1 *nn.RMSNorm `gguf:"ln1"`
SelfAttention *VisionSelfAttention
Norm2 *nn.RMSNorm `gguf:"ln2"`
MLP *VisionMLP
}
func (e *VisionEncoderLayer) Forward(ctx ml.Context, hiddenStates, cos, sin, mask ml.Tensor, opts *VisionModelOptions) ml.Tensor {
residual := hiddenStates
hiddenStates = e.Norm1.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = e.SelfAttention.Forward(ctx, hiddenStates, cos, sin, mask, opts)
hiddenStates = hiddenStates.Add(ctx, residual)
residual = hiddenStates
hiddenStates = e.Norm2.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = e.MLP.Forward(ctx, hiddenStates, opts)
return hiddenStates.Add(ctx, residual)
}
// VisionModelOptions contains configuration options
type VisionModelOptions struct {
hiddenSize int
numHeads int
headDim int
patchSize int
numChannels int
eps float32
ropeTheta float32
spatialMergeSize int
windowSize int
fullAttnBlocks []int32
temporalPatchSize int
}
type PatchEmbedding struct {
PatchConv0 *nn.Conv2D `gguf:"patch_embd_0"`
PatchConv1 *nn.Conv2D `gguf:"patch_embd_1"`
}
func (pe *PatchEmbedding) Forward(ctx ml.Context, pixelValues ml.Tensor, opts *VisionModelOptions) ml.Tensor {
numPatches := pixelValues.Shape()[1]
// Reshape the input tensor to match the expected dimensions
pixelValues = pixelValues.Reshape(ctx, opts.patchSize*opts.patchSize, opts.temporalPatchSize, opts.numChannels, numPatches)
// Permute the tensor to bring the temporal dimension to the front
pixelValues = pixelValues.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
// Split the tensor into parts for the temporal convolutions
in0 := pixelValues.View(ctx, 0, 1, pixelValues.Stride(1), pixelValues.Dim(1), pixelValues.Stride(2), pixelValues.Dim(2), pixelValues.Stride(3), pixelValues.Dim(3)).Contiguous(ctx)
in0 = in0.Reshape(ctx, opts.patchSize, opts.patchSize, opts.numChannels, numPatches)
in1 := pixelValues.View(ctx, pixelValues.Stride(0), 1, pixelValues.Stride(1), pixelValues.Dim(1), pixelValues.Stride(2), pixelValues.Dim(2), pixelValues.Stride(3), pixelValues.Dim(3)).Contiguous(ctx)
in1 = in1.Reshape(ctx, opts.patchSize, opts.patchSize, opts.numChannels, numPatches)
s0, s1 := opts.patchSize, opts.patchSize // Use full stride
p0, p1 := 0, 0 // padding
d0, d1 := 1, 1 // dilation
out0 := pe.PatchConv0.Forward(ctx, in0, s0, s1, p0, p1, d0, d1)
out1 := pe.PatchConv1.Forward(ctx, in1, s0, s1, p0, p1, d0, d1)
// Add the outputs from the two temporal convolutions
out := out0.Add(ctx, out1)
// Reshape the output tensor to match the expected dimensions
return out.Reshape(ctx, opts.hiddenSize, numPatches)
}
// VisionPatchMerger implements patch merging for the Qwen vision model
type VisionPatchMerger struct {
LNQ *nn.RMSNorm `gguf:"ln_q"`
MLP0 *nn.Linear `gguf:"mlp.0"`
MLP2 *nn.Linear `gguf:"mlp.2"`
}
// Forward computes patch merging for the vision model
func (pm *VisionPatchMerger) Forward(ctx ml.Context, visionOutputs ml.Tensor, opts *VisionModelOptions) ml.Tensor {
normalized := pm.LNQ.Forward(ctx, visionOutputs, opts.eps)
hiddenSize := visionOutputs.Dim(0) * (opts.spatialMergeSize * opts.spatialMergeSize)
// Reshape the normalized output to view the hidden size dimension
reshaped := normalized.Reshape(ctx, hiddenSize, normalized.Dim(1)/(opts.spatialMergeSize*opts.spatialMergeSize), batchSize)
hidden := pm.MLP0.Forward(ctx, reshaped)
activated := hidden.GELU(ctx)
output := pm.MLP2.Forward(ctx, activated)
return output
}
// VisionModel implements the Qwen vision model
type VisionModel struct {
PatchEmbedding *PatchEmbedding
Layers []VisionEncoderLayer `gguf:"blk"`
PatchMerger *VisionPatchMerger `gguf:"merger"`
*VisionModelOptions
}
// Forward computes the vision model for an input tensor
func (m *VisionModel) Forward(ctx ml.Context, pixelValues ml.Tensor, grid *Grid) ml.Tensor {
// Extract patch embeddings
hiddenStates := m.PatchEmbedding.Forward(ctx, pixelValues, m.VisionModelOptions)
positionEmbedding := m.PositionalEmbedding(ctx, grid)
windowIndex, bounds := m.WindowIndex(ctx, grid)
spatialMergeUnit := m.spatialMergeSize * m.spatialMergeSize
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0)*spatialMergeUnit, hiddenStates.Dim(1)/spatialMergeUnit)
hiddenStates = hiddenStates.Rows(ctx, windowIndex)
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0)/spatialMergeUnit, hiddenStates.Dim(1)*spatialMergeUnit)
positionEmbedding = positionEmbedding.Reshape(ctx, positionEmbedding.Dim(0)*spatialMergeUnit, positionEmbedding.Dim(1)/spatialMergeUnit)
positionEmbedding = positionEmbedding.Rows(ctx, windowIndex)
positionEmbedding = positionEmbedding.Reshape(ctx, positionEmbedding.Dim(0)/spatialMergeUnit, positionEmbedding.Dim(1)*spatialMergeUnit)
positionEmbedding = positionEmbedding.Concat(ctx, positionEmbedding, 0)
cos, sin := positionEmbedding.Cos(ctx), positionEmbedding.Sin(ctx)
cos = cos.Reshape(ctx, cos.Dim(0), 1, cos.Dim(1))
sin = sin.Reshape(ctx, sin.Dim(0), 1, sin.Dim(1))
mask := blockDiagonalMask(ctx, hiddenStates.Dim(1), bounds, m.VisionModelOptions.numHeads)
// Apply encoder layers
for i, layer := range m.Layers {
if slices.Contains(m.fullAttnBlocks, int32(i)) {
hiddenStates = layer.Forward(ctx, hiddenStates, cos, sin, nil, m.VisionModelOptions)
} else {
hiddenStates = layer.Forward(
ctx,
hiddenStates,
cos,
sin,
mask,
m.VisionModelOptions,
)
}
}
hiddenStates = m.PatchMerger.Forward(ctx, hiddenStates, m.VisionModelOptions)
reverseWindowIndex := windowIndex.Argsort(ctx)
return hiddenStates.Rows(ctx, reverseWindowIndex)
}
// WindowIndex divides the grid into windows and returns:
// 1. A tensor containing flattened indices of all grid points organized by windows
// 2. A slice of boundaries that mark where each window's data begins and ends
// in the flattened representation, scaled by spatialMergeSize squared
//
// The boundaries slice always starts with 0 and contains cumulative ending
// positions for each window, allowing downstream processing to identify
// window boundaries in the tensor data.
func (m *VisionModel) WindowIndex(ctx ml.Context, grid *Grid) (ml.Tensor, []int) {
vitMergerWindowSize := m.windowSize / m.spatialMergeSize / m.patchSize
llmGridH := grid.Height / m.spatialMergeSize
llmGridW := grid.Width / m.spatialMergeSize
// Calculate window parameters
numWindowsH := int(math.Ceil(float64(llmGridH) / float64(vitMergerWindowSize)))
numWindowsW := int(math.Ceil(float64(llmGridW) / float64(vitMergerWindowSize)))
// Initialize index_new slice
var index []int32
// Initialize bounds with the first element as 0
bounds := []int{0}
totalSeqLen := 0
// Process each window without padding
for wh := range numWindowsH {
for ww := range numWindowsW {
// Calculate window boundaries
hStart := wh * vitMergerWindowSize
wStart := ww * vitMergerWindowSize
hEnd := min(hStart+vitMergerWindowSize, llmGridH)
wEnd := min(wStart+vitMergerWindowSize, llmGridW)
// Calculate sequence length for this window
seqLen := (hEnd - hStart) * (wEnd - wStart)
// Collect indices for this window
for h := hStart; h < hEnd; h++ {
for w := wStart; w < wEnd; w++ {
index = append(index, int32(h*llmGridW+w))
}
}
totalSeqLen += seqLen
bounds = append(bounds, totalSeqLen*(m.spatialMergeSize*m.spatialMergeSize)+bounds[0])
}
}
t := ctx.Input().FromIntSlice(index, len(index))
return t, bounds
}
// PositionalEmbedding generates rotary position embeddings for attention mechanisms
func (m *VisionModel) PositionalEmbedding(ctx ml.Context, grid *Grid) ml.Tensor {
dim := m.headDim / 2
freq := dim / 2
theta := float64(m.ropeTheta)
merge := m.spatialMergeSize
// Create frequency patterns for position encoding
maxGridSize := max(grid.Height, grid.Width)
freqVals := make([]float32, freq*maxGridSize)
for i := range maxGridSize {
for j := range freq {
freqVals[i*freq+j] = float32(i) / float32(math.Pow(theta, float64(j*2)/float64(dim)))
}
}
freqs := ctx.Input().FromFloatSlice(freqVals, freq, maxGridSize)
// Create position coordinates (y,x pairs) for the grid
// In PyTorch: Equivalent to generating position ids with torch.arange()
coords := make([]int32, 0, grid.Height*grid.Width*2)
for y := range grid.Height {
for x := range grid.Width {
coords = append(coords, int32(y), int32(x))
}
}
pos := ctx.Input().FromIntSlice(coords, 2, grid.Width, grid.Height)
// Reshape and permute positions to match spatial merging pattern
pos = pos.Reshape(ctx, 2, grid.Width, merge, grid.Height/merge)
pos = pos.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
pos = pos.Reshape(ctx, 2, merge, merge, grid.Width/merge*grid.Height/merge)
pos = pos.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
pos = pos.Reshape(ctx, 2*merge*merge*grid.Width/merge*grid.Height/merge)
// Use position indices to look up corresponding frequency values
positionalEmbedding := freqs.Rows(ctx, pos)
positionalEmbedding = positionalEmbedding.Reshape(ctx, positionalEmbedding.Dim(0)*2, positionalEmbedding.Dim(1)/2)
return positionalEmbedding
}
// newVisionModel creates a new instance of the Qwen vision model
func newVisionModel(c fs.Config) *VisionModel {
patchSize := int(c.Uint("vision.patch_size", 14))
hiddenSize := int(c.Uint("vision.embedding_length", 1280))
numHeads := int(c.Uint("vision.attention.head_count", 16))
numChannels := int(c.Uint("vision.num_channels", 3))
eps := c.Float("vision.attention.layer_norm_epsilon", 1e-6)
ropeTheta := c.Float("vision.rope.freq_base", 10000.0)
spatialMergeSize := int(c.Uint("vision.spatial_merge_size", 2))
windowSize := int(c.Uint("vision.window_size", 112))
fullAttnBlocks := c.Ints("qwen25vl.vision.fullatt_block_indexes", []int32{7, 15, 23, 31})
temporalPatchSize := int(c.Uint("vision.temporal_patch_size", 2))
model := &VisionModel{
Layers: make([]VisionEncoderLayer, c.Uint("vision.block_count", 32)),
VisionModelOptions: &VisionModelOptions{
hiddenSize: hiddenSize,
numHeads: numHeads,
headDim: hiddenSize / numHeads,
patchSize: patchSize,
numChannels: numChannels,
eps: eps,
ropeTheta: ropeTheta,
spatialMergeSize: spatialMergeSize,
windowSize: windowSize,
temporalPatchSize: temporalPatchSize,
fullAttnBlocks: fullAttnBlocks,
},
}
return model
}