Files
ollama/ml/backend/ggml/ggml.go
Michael Yang bfce55db3d model: load non-repeated tensors into multiple backends
some tensors are expected to be used in repeating layers but are not
themselves repeated. this change copies these tensors into the same
backends as their repeating counterparts to minimize copying tensors
between backends
2025-03-07 14:08:21 -08:00

834 lines
20 KiB
Go

package ggml
// #cgo CPPFLAGS: -I${SRCDIR}/ggml/include
// #include <stdlib.h>
// #include <stdint.h>
// #include "ggml.h"
// #include "ggml-cpu.h"
// #include "ggml-backend.h"
import "C"
import (
"errors"
"fmt"
"io"
"iter"
"log/slog"
"maps"
"os"
"slices"
"strconv"
"strings"
"unicode"
"unsafe"
"github.com/ollama/ollama/format"
fs "github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/ml"
ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
"golang.org/x/sync/errgroup"
)
func devices() iter.Seq[*C.struct_ggml_backend_device] {
return func(yield func(*C.struct_ggml_backend_device) bool) {
ggml.OnceLoad()
for i := range C.ggml_backend_dev_count() {
if !yield(C.ggml_backend_dev_get(i)) {
return
}
}
}
}
type Backend struct {
meta *fs.GGML
flashAttention bool
sched *C.struct_ggml_backend_sched
tensors map[string]*C.struct_ggml_tensor
ctxs []*C.struct_ggml_context
backends []*C.struct_ggml_backend
bufts []*C.struct_ggml_backend_buffer_type
}
func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
meta, n, err := fs.Decode(r, -1)
if err != nil {
return nil, err
}
slog.Info(
"",
"architecture", meta.KV().Architecture(),
"file_type", meta.KV().FileType(),
"name", meta.KV().String("general.name"),
"description", meta.KV().String("general.description"),
"num_tensors", len(meta.Tensors().Items()),
"num_key_values", len(meta.KV()),
)
type dbt struct {
d *C.struct_ggml_backend_device
bts []*C.struct_ggml_backend_buffer_type
}
var cpus, accels, gpus []*C.struct_ggml_backend_device
for d := range devices() {
switch C.ggml_backend_dev_type(d) {
case C.GGML_BACKEND_DEVICE_TYPE_CPU:
cpus = append(cpus, d)
case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
accels = append(accels, d)
case C.GGML_BACKEND_DEVICE_TYPE_GPU:
gpus = append(gpus, d)
}
}
var cpuBufferTypes []*C.struct_ggml_backend_buffer_type
for _, d := range append(accels, append(gpus, cpus...)...) {
switch C.ggml_backend_dev_type(d) {
case C.GGML_BACKEND_DEVICE_TYPE_CPU,
C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
cpuBufferTypes = append(cpuBufferTypes, C.ggml_backend_dev_buffer_type(d))
}
}
var sum uint64
var cumsum []uint64
var gpuBufferTypes []dbt
for _, d := range gpus {
var free, total C.size_t
C.ggml_backend_dev_memory(d, &free, &total)
sum += uint64(free)
cumsum = append(cumsum, sum)
bt := C.ggml_backend_dev_buffer_type(d)
gpuBufferTypes = append(gpuBufferTypes, dbt{
d: d,
bts: append([]*C.struct_ggml_backend_buffer_type{bt}, cpuBufferTypes...),
})
}
splits := make([]float64, len(cumsum))
for i := range splits {
splits[i] = float64(cumsum[i]) / float64(sum)
}
input := dbt{C.ggml_backend_dev_by_type(C.GGML_BACKEND_DEVICE_TYPE_CPU), cpuBufferTypes}
slog.Info("input layer", "device", C.GoString(C.ggml_backend_dev_name(input.d)))
var blocks int
for key, value := range meta.KV() {
if strings.HasSuffix(key, ".block_count") {
blocks += int(value.(uint32))
}
}
indexFunc := func(i int) func(float64) bool {
return func(f float64) bool {
return float64(i)/float64(blocks+1) < f
}
}
layers := make([]dbt, blocks)
for i := range layers {
layers[i] = gpuBufferTypes[slices.IndexFunc(splits, indexFunc(i))]
slog.Info("layer", "i", i, "device", C.GoString(C.ggml_backend_dev_name(layers[i].d)))
}
output := gpuBufferTypes[slices.IndexFunc(splits, indexFunc(blocks))]
slog.Info("output layer", "device", C.GoString(C.ggml_backend_dev_name(output.d)))
maxTensors := len(meta.Tensors().Items())
maxTensors += 1
maxTensors += blocks * 2
slog.Info("max tensors", "max_tensors", maxTensors)
type tensor struct {
source *fs.Tensor
target string
}
targets := make(map[string][]string)
ctxs := make(map[*C.struct_ggml_backend_buffer_type]*C.struct_ggml_context)
createTensor := func(t tensor, bts []*C.struct_ggml_backend_buffer_type) *C.struct_ggml_tensor {
for _, bt := range bts {
if _, ok := ctxs[bt]; !ok {
ctxs[bt] = C.ggml_init(C.struct_ggml_init_params{
mem_size: C.ggml_tensor_overhead() * C.size_t(maxTensors),
no_alloc: true,
})
}
targets[t.source.Name] = append(targets[t.source.Name], t.target)
name := t.source.Name
if t.target != "" {
name = t.target
}
cname := C.CString(name)
defer C.free(unsafe.Pointer(cname))
if tt := C.ggml_get_tensor(ctxs[bt], cname); tt != nil {
return tt
}
tt := C.ggml_new_tensor(ctxs[bt], t.source.Kind, C.int(len(t.source.Shape)), (*C.int64_t)(unsafe.Pointer(&t.source.Shape[0])))
C.ggml_set_name(tt, cname)
slog.Debug("created tensor", "name", name, "shape", t.source.Shape, "dtype", t.source.Kind, "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
//nolint:staticcheck // TODO: check if buffer type supports this tensor
return tt
}
return nil
}
hasPart := func(s string, parts ...string) bool {
split := strings.Split(s, ".")
for _, part := range parts {
if slices.Contains(split, part) {
return true
}
}
return false
}
for _, t := range meta.Tensors().Items() {
switch {
case hasPart(t.Name, "position_embd", "token_embd", "token_norm_embd", "token_types"):
createTensor(tensor{source: t}, input.bts)
case hasPart(t.Name, "cls", "output", "output_norm"):
createTensor(tensor{source: t}, output.bts)
default:
if i := func() int {
if fields := strings.FieldsFunc(t.Name, func(r rune) bool { return !unicode.IsNumber(r) }); len(fields) > 0 {
if i, err := strconv.Atoi(fields[0]); err == nil {
return i
}
}
return -1
}(); i >= 0 {
createTensor(tensor{source: t}, layers[i].bts)
} else {
for i, layer := range layers {
createTensor(tensor{
source: t,
target: "blk." + strconv.Itoa(i) + "." + t.Name,
}, layer.bts)
}
}
}
}
bbs := make(map[*C.struct_ggml_context][]*C.struct_ggml_backend_buffer, len(ctxs))
for bt, c := range ctxs {
if C.ggml_get_first_tensor(c) == nil {
continue
}
b := C.ggml_backend_alloc_ctx_tensors_from_buft(c, bt)
C.ggml_backend_buffer_set_usage(b, C.GGML_BACKEND_BUFFER_USAGE_WEIGHTS)
bbs[c] = append(bbs[c], b)
}
for bs := range maps.Values(bbs) {
for _, b := range bs {
slog.Info("model", "buffer", C.GoString(C.ggml_backend_buffer_name(b)), "size", format.HumanBytes2(uint64(C.ggml_backend_buffer_get_size(b))))
}
}
tensors := make(map[string]*C.struct_ggml_tensor)
for _, c := range ctxs {
for t := C.ggml_get_first_tensor(c); t != nil; t = C.ggml_get_next_tensor(c, t) {
tensors[C.GoString(C.ggml_get_name(t))] = t
}
}
sr := io.NewSectionReader(r, int64(meta.Tensors().Offset), n-int64(meta.Tensors().Offset))
var g errgroup.Group
for _, t := range meta.Tensors().Items() {
for _, target := range targets[t.Name] {
g.Go(func() error {
if target == "" {
target = t.Name
}
tt, ok := tensors[target]
if !ok {
return fmt.Errorf("unassigned tensor: %s", t.Name)
}
bts := make([]byte, t.Size())
n, err := io.ReadFull(io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())), bts)
if err != nil {
return err
}
if n != len(bts) {
return errors.New("short read")
}
cname := C.CString(t.Name)
C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), 0, C.size_t(t.Size()))
C.free(unsafe.Pointer(cname))
return nil
})
}
}
if g.Wait() != nil {
return nil, err
}
var backends []*C.struct_ggml_backend
var bufts []*C.struct_ggml_backend_buffer_type
for _, d := range append(gpus, append(accels, cpus...)...) {
b := C.ggml_backend_dev_init(d, nil)
backends = append(backends, b)
bt := C.ggml_backend_get_default_buffer_type(b)
if d := C.ggml_backend_get_device(b); C.ggml_backend_dev_type(d) == C.GGML_BACKEND_DEVICE_TYPE_CPU && len(gpus) > 0 {
if hbt := C.ggml_backend_dev_host_buffer_type(d); hbt != nil {
bt = hbt
}
}
bufts = append(bufts, bt)
slog.Info("compute buffer", "backend", C.GoString(C.ggml_backend_name(b)), "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
}
return &Backend{
flashAttention: params.FlashAttention,
meta: meta,
tensors: tensors,
sched: C.ggml_backend_sched_new(
(*C.ggml_backend_t)(unsafe.Pointer(&backends[0])),
(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&bufts[0])),
C.int(len(backends)),
C.size_t(max(8192, len(meta.Tensors().Items())*5)),
true,
),
}, nil
}
func init() {
ml.RegisterBackend("ggml", New)
}
func (b *Backend) Config() ml.Config {
return b.meta.KV()
}
func (b *Backend) Get(name string) ml.Tensor {
if t, ok := b.tensors[name]; ok {
return &Tensor{b: b, t: t}
}
return nil
}
func (b *Backend) NewContext() ml.Context {
maxTensors := max(8192, len(b.meta.Tensors().Items())*5)
return &Context{
b: b,
maxTensors: maxTensors,
ctx: C.ggml_init(C.struct_ggml_init_params{
mem_size: C.size_t(maxTensors)*C.ggml_tensor_overhead() + C.ggml_graph_overhead_custom(C.size_t(maxTensors), false),
no_alloc: true,
}),
}
}
func (b *Backend) CacheConfig() ml.CacheConfig {
if b.flashAttention {
return ml.CacheConfig{CachePadding: 256, MaskDType: ml.DTypeF16, MaskBatchPadding: C.GGML_KQ_MASK_PAD}
} else {
return ml.CacheConfig{CachePadding: 32, PermutedV: true}
}
}
type Context struct {
b *Backend
ctx *C.struct_ggml_context
graph *C.struct_ggml_cgraph
maxTensors int
}
func (c *Context) Forward(tensors ...ml.Tensor) ml.Context {
if c.graph == nil {
c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.maxTensors), false)
}
for _, tensor := range tensors {
C.ggml_build_forward_expand(c.graph, tensor.(*Tensor).t)
}
return c
}
func (c *Context) Compute(tensors ...ml.Tensor) {
C.ggml_backend_sched_reset(c.b.sched)
C.ggml_backend_sched_alloc_graph(c.b.sched, c.graph)
C.ggml_backend_sched_graph_compute_async(c.b.sched, c.graph)
needSync := true
sync := func() {
if needSync {
C.ggml_backend_sched_synchronize(c.b.sched)
needSync = false
}
}
for _, t := range tensors {
if C.ggml_nbytes(t.(*Tensor).t) > 0 {
t.(*Tensor).sync = sync
}
}
}
func (c *Context) MaxTensors() int {
return c.maxTensors
}
func shapeToGGML(shape []int) *C.int64_t {
sh := make([]C.int64_t, len(shape))
for i, s := range shape {
sh[i] = C.int64_t(s)
}
return &sh[0]
}
func newTensor(ctx Context, dtype ml.DType, shape []int) ml.Tensor {
if len(shape) < 1 || len(shape) > 4 {
panic("unsupported number of dimensions")
}
for _, dim := range shape {
if dim < 1 {
panic("invalid shape")
}
}
var t *C.struct_ggml_tensor
switch dtype {
case ml.DTypeF32:
t = C.ggml_new_tensor(ctx.ctx, C.GGML_TYPE_F32, C.int(len(shape)), shapeToGGML(shape))
case ml.DTypeF16:
t = C.ggml_new_tensor(ctx.ctx, C.GGML_TYPE_F16, C.int(len(shape)), shapeToGGML(shape))
case ml.DTypeI32:
t = C.ggml_new_tensor(ctx.ctx, C.GGML_TYPE_I32, C.int(len(shape)), shapeToGGML(shape))
default:
panic("unsupported dtype")
}
b := C.ggml_backend_alloc_buffer(C.ggml_backend_sched_get_backend(ctx.b.sched, 0), C.ggml_nbytes(t))
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
C.ggml_set_input(t)
return &Tensor{b: ctx.b, t: t}
}
func (c Context) Empty(dtype ml.DType, shape ...int) ml.Tensor {
return newTensor(c, dtype, shape)
}
func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
t := newTensor(c, dtype, shape)
C.ggml_set_zero(t.(*Tensor).t)
return t
}
func fromSlice[S ~[]E, E float32 | int32](ctx Context, s S, shape []int, dtype uint32) (ml.Tensor, error) {
n := len(s)
if n == 0 {
var shape C.int64_t = 0
t := C.ggml_new_tensor(ctx.ctx, dtype, 1, &shape)
return &Tensor{b: ctx.b, t: t}, nil
}
for _, v := range shape {
n /= v
}
if n != 1 {
return nil, fmt.Errorf("invalid shape %v for %d elements", shape, len(s))
}
t := C.ggml_new_tensor(ctx.ctx, dtype, C.int(len(shape)), shapeToGGML(shape))
b := C.ggml_backend_alloc_buffer(C.ggml_backend_sched_get_backend(ctx.b.sched, 0), C.ggml_nbytes(t))
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
C.ggml_backend_tensor_set(t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t))
C.ggml_set_input(t)
return &Tensor{b: ctx.b, t: t}, nil
}
func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
return fromSlice(c, s, shape, C.GGML_TYPE_F32)
}
func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
return fromSlice(c, s, shape, C.GGML_TYPE_I32)
}
func (c *Context) Close() {
if c != nil {
C.ggml_free(c.ctx)
}
}
type Tensor struct {
b *Backend
t *C.struct_ggml_tensor
sync func()
}
func (t *Tensor) LogValue() slog.Value {
return slog.GroupValue(
slog.String("name", C.GoString(C.ggml_get_name(t.t))),
slog.String("type", C.GoString(C.ggml_type_name(t.t._type))),
slog.Any("shape", t.Shape()),
)
}
func (t *Tensor) Dim(n int) int {
return int(t.t.ne[n])
}
func (t *Tensor) Stride(n int) int {
return int(t.t.nb[n])
}
func (t *Tensor) Shape() []int {
shape := make([]int, C.ggml_n_dims(t.t))
for i := range shape {
shape[i] = t.Dim(i)
}
return shape
}
func (t *Tensor) Bytes() (data []byte) {
if t.sync != nil {
data = make([]byte, C.ggml_nbytes(t.t))
t.sync()
C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
}
return
}
func (t *Tensor) Floats() (data []float32) {
if t.sync != nil {
data = make([]float32, C.ggml_nelements(t.t))
t.sync()
C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
}
return
}
func (t *Tensor) DType() ml.DType {
switch t.t._type {
case C.GGML_TYPE_F32:
return ml.DTypeF32
case C.GGML_TYPE_F16:
return ml.DTypeF16
case C.GGML_TYPE_I32:
return ml.DTypeI32
default:
return ml.DTypeOther
}
}
func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_add(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
if len(s) > 0 {
return t.Concat(ctx, s[0].Stack(ctx, dim, s[1:]...), dim)
}
return t
}
func (t *Tensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_concat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(dim)),
}
}
func (t *Tensor) Contiguous(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_cont(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_mul(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
mul := C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t)
C.ggml_mul_mat_set_prec(mul, C.GGML_PREC_F32)
return &Tensor{
b: t.b,
t: mul,
}
}
func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor {
tt := (&Tensor{b: t.b, t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
if b != nil {
tt = tt.Add(ctx, b)
}
return tt
}
func (t *Tensor) RMSNorm(ctx ml.Context, w ml.Tensor, eps float32) ml.Tensor {
return (&Tensor{b: t.b, t: C.ggml_rms_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
}
func (t *Tensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
if len(shape) != 4 {
panic("expected 4 dimensions")
}
return &Tensor{
b: t.b,
t: C.ggml_pad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
}
}
func (t *Tensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
if len(shape) != 4 {
panic("expected 4 dimensions")
}
return &Tensor{
b: t.b,
t: C.ggml_permute(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
}
}
func (t *Tensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_get_rows(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_cpy(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
switch len(shape) {
case 1:
return &Tensor{
b: t.b,
t: C.ggml_reshape_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])),
}
case 2:
return &Tensor{
b: t.b,
t: C.ggml_reshape_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
}
case 3:
return &Tensor{
b: t.b,
t: C.ggml_reshape_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
}
case 4:
return &Tensor{
b: t.b,
t: C.ggml_reshape_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
}
default:
panic("unsupported number of dimensions")
}
}
func (t *Tensor) Scale(ctx ml.Context, s float64) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_scale(ctx.(*Context).ctx, t.t, (C.float)(s)),
}
}
func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_soft_max(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_tanh_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Unpad(ctx ml.Context, shape ...int) ml.Tensor {
if len(shape) != 4 {
panic("expected 4 dimensions")
}
return &Tensor{
b: t.b,
t: C.ggml_unpad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
}
}
func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
switch len(shape) {
case 1:
return &Tensor{
b: t.b,
t: C.ggml_view_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.size_t(offset)),
}
case 3:
return &Tensor{
b: t.b,
t: C.ggml_view_2d(ctx.(*Context).ctx, t.t,
C.int64_t(shape[0]), C.int64_t(shape[2]),
C.size_t(shape[1]),
C.size_t(offset)),
}
case 5:
return &Tensor{
b: t.b,
t: C.ggml_view_3d(ctx.(*Context).ctx, t.t,
C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]),
C.size_t(shape[1]), C.size_t(shape[3]),
C.size_t(offset)),
}
case 7:
return &Tensor{
b: t.b,
t: C.ggml_view_4d(ctx.(*Context).ctx, t.t,
C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.int64_t(shape[6]),
C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(shape[5]),
C.size_t(offset)),
}
default:
panic("unsupported number of dimensions")
}
}
const (
ropeTypeNorm C.int = iota
)
func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim uint32, ropeBase, ropeScale float32) ml.Tensor {
if ropeFactors == nil {
ropeFactors = &Tensor{b: t.b}
}
dequant := t.t
if C.ggml_is_quantized(t.t._type) {
dequant = C.ggml_cast(ctx.(*Context).ctx, t.t, C.GGML_TYPE_F32)
}
return &Tensor{
b: t.b,
t: C.ggml_rope_ext(
ctx.(*Context).ctx, dequant, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t,
C.int(ropeDim),
131072, // YaRN n_ctx_train
ropeTypeNorm, // ROPE_TYPE_NORM
C.float(ropeBase),
C.float(ropeScale),
0., // YaRN ext_factor
1., // YaRN attn_factor
32., // YaRN beta_fast
1., // YaRN beta_slow
),
}
}
func (t *Tensor) GELU(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) SILU(ctx ml.Context) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
return &Tensor{
b: t.b,
t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)),
}
}
func (t *Tensor) ScaledDotProductAttention(ctx ml.Context, key, value, mask ml.Tensor, scale float64) ml.Tensor {
var kqMask *C.struct_ggml_tensor
if mask != nil {
kqMask = mask.(*Tensor).t
}
query := t.Permute(ctx, 0, 2, 1, 3)
key = key.Permute(ctx, 0, 2, 1, 3)
if t.b.flashAttention {
value = value.Permute(ctx, 0, 2, 1, 3)
kqv := C.ggml_flash_attn_ext(ctx.(*Context).ctx, query.(*Tensor).t, key.(*Tensor).t, value.(*Tensor).t, kqMask, C.float(scale), 0, 0)
C.ggml_flash_attn_ext_set_prec(kqv, C.GGML_PREC_F32)
return &Tensor{b: t.b, t: kqv}
} else {
kq := key.MulmatFullPrec(ctx, query)
kq = &Tensor{
b: t.b,
t: C.ggml_soft_max_ext(ctx.(*Context).ctx, kq.(*Tensor).t, kqMask, C.float(scale), 0),
}
kqv := value.Mulmat(ctx, kq)
return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
}
}