mirror of
https://github.com/ollama/ollama.git
synced 2025-03-23 08:12:01 +01:00
176 lines
5.6 KiB
C++
Vendored
176 lines
5.6 KiB
C++
Vendored
/**
|
|
* llama.cpp - commit 46e3556e01b824e52395fb050b29804b6cff2a7c - do not edit this file
|
|
*
|
|
* MIT License
|
|
*
|
|
* Copyright (c) 2023-2024 The ggml authors
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "llama.h"
|
|
|
|
#include <array>
|
|
|
|
// bump if necessary
|
|
#define LLAMA_MAX_LAYERS 512
|
|
#define LLAMA_MAX_EXPERTS 256 // DeepSeekV3
|
|
|
|
enum llama_expert_gating_func_type {
|
|
LLAMA_EXPERT_GATING_FUNC_TYPE_NONE = 0,
|
|
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX = 1,
|
|
LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID = 2,
|
|
};
|
|
|
|
struct llama_hparams_posnet {
|
|
uint32_t n_embd;
|
|
uint32_t n_layer;
|
|
};
|
|
|
|
struct llama_hparams_convnext {
|
|
uint32_t n_embd;
|
|
uint32_t n_layer;
|
|
};
|
|
|
|
struct llama_hparams {
|
|
bool vocab_only;
|
|
bool rope_finetuned;
|
|
bool use_par_res;
|
|
bool swin_norm;
|
|
|
|
uint32_t n_vocab = 0;
|
|
uint32_t n_ctx_train; // context size the model was trained on
|
|
uint32_t n_embd;
|
|
uint32_t n_embd_features = 0;
|
|
uint32_t n_layer;
|
|
uint32_t n_rot;
|
|
uint32_t n_swa = 0; // sliding window attention (SWA)
|
|
uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
|
|
uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
|
|
uint32_t n_expert = 0;
|
|
uint32_t n_expert_used = 0;
|
|
uint32_t n_vocab_type = 0; // for BERT-style token types
|
|
uint32_t n_rel_attn_bkts = 0;
|
|
|
|
// for WavTokenizer
|
|
struct llama_hparams_posnet posnet;
|
|
struct llama_hparams_convnext convnext;
|
|
|
|
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_arr;
|
|
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
|
|
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
|
|
|
|
std::array<std::array<uint32_t, LLAMA_MAX_LAYERS>, 4> n_bskcn_arr = {};
|
|
std::array<uint32_t, LLAMA_MAX_LAYERS> cross_attn_layers;
|
|
|
|
uint32_t n_layer_dense_lead = 0;
|
|
uint32_t n_lora_q = 0;
|
|
uint32_t n_lora_kv = 0;
|
|
uint32_t n_ff_exp = 0;
|
|
uint32_t n_ff_shexp = 0;
|
|
uint32_t n_expert_shared = 0;
|
|
uint32_t n_norm_groups = 0;
|
|
|
|
float expert_weights_scale = 0.0;
|
|
bool expert_weights_norm = false;
|
|
uint32_t expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_NONE;
|
|
|
|
float f_norm_eps;
|
|
float f_norm_rms_eps;
|
|
float f_norm_group_eps;
|
|
|
|
float f_attn_logit_softcapping = 50.0f;
|
|
float f_final_logit_softcapping = 30.0f;
|
|
|
|
// for RWKV
|
|
uint32_t rescale_every_n_layers = 0;
|
|
uint32_t time_mix_extra_dim = 0;
|
|
uint32_t time_decay_extra_dim = 0;
|
|
uint32_t wkv_head_size = 0;
|
|
|
|
float rope_attn_factor = 1.0f;
|
|
float rope_freq_base_train;
|
|
float rope_freq_scale_train;
|
|
uint32_t n_ctx_orig_yarn;
|
|
float rope_yarn_log_mul;
|
|
|
|
std::array<int, 4> rope_sections;
|
|
|
|
// for State Space Models
|
|
uint32_t ssm_d_conv = 0;
|
|
uint32_t ssm_d_inner = 0;
|
|
uint32_t ssm_d_state = 0;
|
|
uint32_t ssm_dt_rank = 0;
|
|
|
|
bool ssm_dt_b_c_rms = false;
|
|
|
|
float f_clamp_kqv = 0.0f;
|
|
float f_max_alibi_bias = 0.0f;
|
|
float f_logit_scale = 0.0f;
|
|
|
|
// Additional scale factors (Granite/Granite MoE)
|
|
float f_residual_scale = 0.0f;
|
|
float f_embedding_scale = 0.0f;
|
|
float f_attention_scale = 0.0f;
|
|
|
|
bool causal_attn = true;
|
|
bool use_alibi = false;
|
|
bool attn_soft_cap = false;
|
|
|
|
// needed by encoder-decoder models (e.g. T5, FLAN-T5)
|
|
// ref: https://github.com/ggerganov/llama.cpp/pull/8141
|
|
llama_token dec_start_token_id = LLAMA_TOKEN_NULL;
|
|
|
|
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
|
|
enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
|
|
enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
|
|
|
|
uint32_t n_head(uint32_t il = 0) const;
|
|
|
|
uint32_t n_head_kv(uint32_t il = 0) const;
|
|
|
|
uint32_t n_ff(uint32_t il = 0) const;
|
|
|
|
uint32_t n_gqa(uint32_t il = 0) const;
|
|
|
|
// dimension of key embeddings across all k-v heads
|
|
uint32_t n_embd_k_gqa(uint32_t il = 0) const;
|
|
|
|
// dimension of value embeddings across all k-v heads
|
|
uint32_t n_embd_v_gqa(uint32_t il = 0) const;
|
|
|
|
// dimension of the rolling state embeddings
|
|
// corresponds to Mamba's conv_states size or RWKV's token_shift states size
|
|
uint32_t n_embd_k_s() const;
|
|
|
|
// dimension of the recurrent state embeddings
|
|
uint32_t n_embd_v_s() const;
|
|
|
|
// Block skip connection
|
|
bool n_bskcn(uint32_t n, uint32_t il) const;
|
|
|
|
// cross attention layers
|
|
bool cross_attention_layers(uint32_t il) const;
|
|
};
|
|
|
|
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
|
|
|