mirror of
https://github.com/ollama/ollama.git
synced 2025-03-20 23:02:48 +01:00
The encoder cache needs to know the position of images in the input stream so that it knows when to delete them. Previously images didn't have a position, so we implied one by breaking batches before an image and then assuming the image was in the first position. However, multimodal objects are now given explicit positions in the input stream, so we can use that instead. Breaking batches was also a way to simulate a cross attention mask for mllama. However, given that it only supports a single sequence and a single image, this mask doesn't serve any real purpose. Removing the batch break does not appear to affect the quality of the output. Most of this is simply moving the input data structures to a new package to avoid import cycles.
307 lines
7.3 KiB
Go
307 lines
7.3 KiB
Go
package model
|
|
|
|
import (
|
|
"errors"
|
|
"fmt"
|
|
_ "image/jpeg"
|
|
_ "image/png"
|
|
"log/slog"
|
|
"os"
|
|
"reflect"
|
|
"strconv"
|
|
"strings"
|
|
|
|
_ "golang.org/x/image/bmp"
|
|
_ "golang.org/x/image/tiff"
|
|
_ "golang.org/x/image/webp"
|
|
|
|
fs "github.com/ollama/ollama/fs/ggml"
|
|
"github.com/ollama/ollama/kvcache"
|
|
"github.com/ollama/ollama/ml"
|
|
_ "github.com/ollama/ollama/ml/backend"
|
|
"github.com/ollama/ollama/model/input"
|
|
)
|
|
|
|
// Model implements a specific model architecture, defining the forward pass and any model-specific configuration
|
|
type Model interface {
|
|
Forward(ml.Context, input.Options) (ml.Tensor, error)
|
|
|
|
Backend() ml.Backend
|
|
Config() config
|
|
}
|
|
|
|
// MultimodalProcessor must be implemented by multimodal models.
|
|
type MultimodalProcessor interface {
|
|
// EncodeMultimodal processes a single input (such as an image) and
|
|
// generates an output (typically an embedding) that can be used by the model.
|
|
//
|
|
// The return value is most typically an ml.Tensor, however, different
|
|
// type are possible, such as an object containing a tensor plus
|
|
// additional metadata, a slice of tensors or even just the original input.
|
|
//
|
|
// The result may be cached by the runner.
|
|
EncodeMultimodal(ml.Context, []byte) (any, error)
|
|
|
|
// PostTokenize is called after tokenization to allow the model to edit the
|
|
// input stream to correctly arrange multimodal elements.
|
|
//
|
|
// The input is a slice of tokens with the results of EncodeMultimodal interleaved
|
|
// in the order that the user provided them. Each element of the slice will be
|
|
// either a single token or single multimodal object.
|
|
//
|
|
// The model must ensure that inputs are stored according to how they will be
|
|
// processed and stored in the cache. For example, Llava-style models should insert
|
|
// placeholder tokens equal to the feature size of the corresponding image with
|
|
// the image itself attached to and split across these tokens. When Forward is called
|
|
// a partial subset of these tokens may be submitted according to the batch size.
|
|
//
|
|
// This function is also responsible for updating MultimodalHash for any Multimodal
|
|
// that is modified to ensure that there is a unique hash value that accurately
|
|
// represents the contents.
|
|
PostTokenize(ml.Context, []input.Input) ([]input.Input, error)
|
|
}
|
|
|
|
// Base implements the common fields and methods for all models
|
|
type Base struct {
|
|
b ml.Backend
|
|
config
|
|
}
|
|
|
|
type config struct {
|
|
Cache kvcache.Cache
|
|
}
|
|
|
|
// Backend returns the underlying backend that will run the model
|
|
func (m *Base) Backend() ml.Backend {
|
|
return m.b
|
|
}
|
|
|
|
func (m *Base) Config() config {
|
|
return m.config
|
|
}
|
|
|
|
var models = make(map[string]func(ml.Config) (Model, error))
|
|
|
|
// Register registers a model constructor for the given architecture
|
|
func Register(name string, f func(ml.Config) (Model, error)) {
|
|
if _, ok := models[name]; ok {
|
|
panic("model: model already registered")
|
|
}
|
|
|
|
models[name] = f
|
|
}
|
|
|
|
// New initializes a new model instance with the provided configuration based on the metadata in the model file
|
|
func New(modelPath string, params ml.BackendParams) (Model, error) {
|
|
r, err := os.Open(modelPath)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
defer r.Close()
|
|
|
|
b, err := ml.NewBackend(r, params)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
arch := b.Config().Architecture()
|
|
f, ok := models[arch]
|
|
if !ok {
|
|
return nil, fmt.Errorf("unsupported model architecture %q", arch)
|
|
}
|
|
|
|
m, err := f(b.Config())
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
base := Base{b: b, config: m.Config()}
|
|
|
|
v := reflect.ValueOf(m)
|
|
v.Elem().Set(populateFields(base, v.Elem()))
|
|
return m, nil
|
|
}
|
|
|
|
func NewTextProcessor(s string) (TextProcessor, error) {
|
|
r, err := os.Open(s)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
defer r.Close()
|
|
meta, _, err := fs.Decode(r, -1)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return getTextProcessor(meta.KV())
|
|
}
|
|
|
|
func getTextProcessor(kv fs.KV) (TextProcessor, error) {
|
|
arch := kv.Architecture()
|
|
f, ok := models[arch]
|
|
if !ok {
|
|
return nil, fmt.Errorf("unsupported model architecture %q", arch)
|
|
}
|
|
m, err := f(kv)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
tp, ok := m.(TextProcessor)
|
|
if !ok {
|
|
return nil, fmt.Errorf("%v is not a TextProcessor", m)
|
|
}
|
|
return tp, nil
|
|
}
|
|
|
|
func populateFields(base Base, v reflect.Value, tags ...Tag) reflect.Value {
|
|
t := v.Type()
|
|
|
|
if t.Kind() == reflect.Struct {
|
|
allNil := true
|
|
for i := range t.NumField() {
|
|
tt := t.Field(i).Type
|
|
vv := v.Field(i)
|
|
if !vv.CanSet() {
|
|
continue
|
|
}
|
|
|
|
// make a copy
|
|
tagsCopy := tags
|
|
if tag := t.Field(i).Tag.Get("gguf"); tag != "" {
|
|
tagsCopy = append(tagsCopy, ParseTags(tag))
|
|
}
|
|
|
|
if tt == reflect.TypeOf((*Base)(nil)).Elem() {
|
|
vv.Set(reflect.ValueOf(base))
|
|
} else if tt == reflect.TypeOf((*ml.Tensor)(nil)).Elem() {
|
|
var fn func([]Tag) [][]string
|
|
fn = func(tags []Tag) (values [][]string) {
|
|
if len(tags) < 1 {
|
|
return nil
|
|
}
|
|
|
|
values = [][]string{{tags[0].Name}}
|
|
for _, alt := range tags[0].Alternate {
|
|
values = append(values, []string{alt})
|
|
}
|
|
|
|
for i, value := range values {
|
|
for _, rest := range fn(tags[1:]) {
|
|
value = append(value, rest...)
|
|
}
|
|
|
|
values[i] = value
|
|
}
|
|
|
|
return values
|
|
}
|
|
|
|
names := fn(tagsCopy)
|
|
for _, name := range names {
|
|
if tensor := base.Backend().Get(strings.Join(name, ".")); tensor != nil {
|
|
slog.Debug("found tensor", "", tensor)
|
|
vv.Set(reflect.ValueOf(tensor))
|
|
break
|
|
}
|
|
}
|
|
} else if tt.Kind() == reflect.Pointer || tt.Kind() == reflect.Interface {
|
|
setPointer(base, vv, tagsCopy)
|
|
} else if tt.Kind() == reflect.Slice || tt.Kind() == reflect.Array {
|
|
for i := range vv.Len() {
|
|
vvv := vv.Index(i)
|
|
if vvv.Kind() == reflect.Pointer || vvv.Kind() == reflect.Interface {
|
|
setPointer(base, vvv, append(tagsCopy, Tag{Name: strconv.Itoa(i)}))
|
|
} else {
|
|
vvv.Set(populateFields(base, vvv, append(tagsCopy, Tag{Name: strconv.Itoa(i)})...))
|
|
}
|
|
}
|
|
}
|
|
|
|
if !canNil(tt) || !vv.IsNil() {
|
|
allNil = false
|
|
}
|
|
}
|
|
|
|
if allNil {
|
|
return reflect.Zero(t)
|
|
}
|
|
}
|
|
|
|
return v
|
|
}
|
|
|
|
func setPointer(base Base, v reflect.Value, tags []Tag) {
|
|
vv := v
|
|
if v.Kind() == reflect.Interface {
|
|
if v.IsNil() {
|
|
return
|
|
}
|
|
|
|
vv = vv.Elem()
|
|
}
|
|
|
|
vv = vv.Elem()
|
|
if v.IsNil() {
|
|
vv = reflect.New(v.Type().Elem()).Elem()
|
|
}
|
|
|
|
if f := populateFields(base, vv, tags...); f.CanAddr() {
|
|
v.Set(f.Addr())
|
|
}
|
|
}
|
|
|
|
type Tag struct {
|
|
Name string
|
|
Alternate []string
|
|
}
|
|
|
|
func ParseTags(s string) (tag Tag) {
|
|
parts := strings.Split(s, ",")
|
|
if len(parts) > 0 {
|
|
tag.Name = parts[0]
|
|
|
|
for _, part := range parts[1:] {
|
|
if value, ok := strings.CutPrefix(part, "alt:"); ok {
|
|
tag.Alternate = append(tag.Alternate, value)
|
|
}
|
|
}
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
func canNil(t reflect.Type) bool {
|
|
return t.Kind() == reflect.Chan ||
|
|
t.Kind() == reflect.Func ||
|
|
t.Kind() == reflect.Interface ||
|
|
t.Kind() == reflect.Map ||
|
|
t.Kind() == reflect.Pointer ||
|
|
t.Kind() == reflect.Slice
|
|
}
|
|
|
|
func Forward(ctx ml.Context, m Model, opts input.Options) (ml.Tensor, error) {
|
|
if len(opts.Positions) != len(opts.Sequences) {
|
|
return nil, fmt.Errorf("length of positions (%v) must match length of seqs (%v)", len(opts.Positions), len(opts.Sequences))
|
|
}
|
|
|
|
if len(opts.Positions) < 1 {
|
|
return nil, errors.New("batch size cannot be less than 1")
|
|
}
|
|
|
|
cache := m.Config().Cache
|
|
if cache != nil {
|
|
err := cache.StartForward(ctx, opts)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
|
|
t, err := m.Forward(ctx, opts)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
ctx.Forward(t).Compute(t)
|
|
|
|
return t, nil
|
|
}
|