mirror of
https://github.com/bitcoin/bitcoin.git
synced 2026-01-19 23:03:45 +01:00
Merge bitcoin/bitcoin#30442: precalculate SipHash constant salt XORs
6eb5ba5691refactor: extract shared `SipHash` state into `SipHashState` (Lőrinc)118d22ddb4optimization: cache `PresaltedSipHasher` in `CBlockHeaderAndShortTxIDs` (Lőrinc)9ca52a4cbeoptimization: migrate `SipHashUint256` to `PresaltedSipHasher` (Lőrinc)ec11b9fedeoptimization: introduce `PresaltedSipHasher` for repeated hashing (Lőrinc)20330548cfrefactor: extract `SipHash` C0-C3 constants to class scope (Lőrinc)9f9eb7fbc0test: rename k1/k2 to k0/k1 in `SipHash` consistency tests (Lőrinc) Pull request description: This change is part of [[IBD] - Tracking PR for speeding up Initial Block Download](https://github.com/bitcoin/bitcoin/pull/32043) ### Summary The in-memory representation of the UTXO set uses (salted) [SipHash](https://github.com/bitcoin/bitcoin/blob/master/src/coins.h#L226) to avoid key collision attacks. Hashing `uint256` keys is performed frequently throughout the codebase. Previously, specialized optimizations existed as standalone functions (`SipHashUint256` and `SipHashUint256Extra`), but the constant salting operations (C0-C3 XOR with keys) were recomputed on every call. This PR introduces `PresaltedSipHasher`, a class that caches the initial SipHash state (v0-v3 after XORing constants with keys), eliminating redundant constant computations when hashing multiple values with the same keys. The optimization is applied uniformly across: - All `Salted*Hasher` classes (`SaltedUint256Hasher`, `SaltedTxidHasher`, `SaltedWtxidHasher`, `SaltedOutpointHasher`) - `CBlockHeaderAndShortTxIDs` for compact block short ID computation ### Details The change replaces the standalone `SipHashUint256` and `SipHashUint256Extra` functions with `PresaltedSipHasher` class methods that cache the constant-salted state. This is particularly beneficial for hash map operations where the same salt is used repeatedly (as suggested by Sipa in https://github.com/bitcoin/bitcoin/pull/30442#issuecomment-2628994530). `CSipHasher` behavior remains unchanged; only the specialized `uint256` paths and callers now reuse the cached state instead of recomputing it. ### Measurements Benchmarks were run using local `SaltedOutpointHasherBench_*` microbenchmarks (not included in this PR) that exercise `SaltedOutpointHasher` in realistic `std::unordered_set` scenarios. <details> <summary>Benchmarks</summary> ```C++ diff --git a/src/bench/crypto_hash.cpp b/src/bench/crypto_hash.cpp --- a/src/bench/crypto_hash.cpp(revision9b1a7c3e8d) +++ b/src/bench/crypto_hash.cpp(revision e1b4f056b3097e7e34b0eda31f57826d81c9d810) @@ -2,7 +2,6 @@ // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. - #include <bench/bench.h> #include <crypto/muhash.h> #include <crypto/ripemd160.h> @@ -12,9 +11,11 @@ #include <crypto/sha512.h> #include <crypto/siphash.h> #include <random.h> -#include <span.h> #include <tinyformat.h> #include <uint256.h> +#include <primitives/transaction.h> +#include <util/hasher.h> +#include <unordered_set> #include <cstdint> #include <vector> @@ -205,6 +206,98 @@ }); } +static void SaltedOutpointHasherBench_hash(benchmark::Bench& bench) +{ + FastRandomContext rng{/*fDeterministic=*/true}; + constexpr size_t size{1000}; + + std::vector<COutPoint> outpoints(size); + for (auto& outpoint : outpoints) { + outpoint = {Txid::FromUint256(rng.rand256()), rng.rand32()}; + } + + const SaltedOutpointHasher hasher; + bench.batch(size).run([&] { + size_t result{0}; + for (const auto& outpoint : outpoints) { + result ^= hasher(outpoint); + } + ankerl::nanobench::doNotOptimizeAway(result); + }); +} + +static void SaltedOutpointHasherBench_match(benchmark::Bench& bench) +{ + FastRandomContext rng{/*fDeterministic=*/true}; + constexpr size_t size{1000}; + + std::unordered_set<COutPoint, SaltedOutpointHasher> values; + std::vector<COutPoint> value_vector; + values.reserve(size); + value_vector.reserve(size); + + for (size_t i{0}; i < size; ++i) { + COutPoint outpoint{Txid::FromUint256(rng.rand256()), rng.rand32()}; + values.emplace(outpoint); + value_vector.push_back(outpoint); + assert(values.contains(outpoint)); + } + + bench.batch(size).run([&] { + bool result{true}; + for (const auto& outpoint : value_vector) { + result ^= values.contains(outpoint); + } + ankerl::nanobench::doNotOptimizeAway(result); + }); +} + +static void SaltedOutpointHasherBench_mismatch(benchmark::Bench& bench) +{ + FastRandomContext rng{/*fDeterministic=*/true}; + constexpr size_t size{1000}; + + std::unordered_set<COutPoint, SaltedOutpointHasher> values; + std::vector<COutPoint> missing_value_vector; + values.reserve(size); + missing_value_vector.reserve(size); + + for (size_t i{0}; i < size; ++i) { + values.emplace(Txid::FromUint256(rng.rand256()), rng.rand32()); + COutPoint missing_outpoint{Txid::FromUint256(rng.rand256()), rng.rand32()}; + missing_value_vector.push_back(missing_outpoint); + assert(!values.contains(missing_outpoint)); + } + + bench.batch(size).run([&] { + bool result{false}; + for (const auto& outpoint : missing_value_vector) { + result ^= values.contains(outpoint); + } + ankerl::nanobench::doNotOptimizeAway(result); + }); +} + +static void SaltedOutpointHasherBench_create_set(benchmark::Bench& bench) +{ + FastRandomContext rng{/*fDeterministic=*/true}; + constexpr size_t size{1000}; + + std::vector<COutPoint> outpoints(size); + for (auto& outpoint : outpoints) { + outpoint = {Txid::FromUint256(rng.rand256()), rng.rand32()}; + } + + bench.batch(size).run([&] { + std::unordered_set<COutPoint, SaltedOutpointHasher> set; + set.reserve(size); + for (const auto& outpoint : outpoints) { + set.emplace(outpoint); + } + ankerl::nanobench::doNotOptimizeAway(set.size()); + }); +} + static void MuHash(benchmark::Bench& bench) { MuHash3072 acc; @@ -276,6 +369,10 @@ BENCHMARK(SHA256_32b_AVX2, benchmark::PriorityLevel::HIGH); BENCHMARK(SHA256_32b_SHANI, benchmark::PriorityLevel::HIGH); BENCHMARK(SipHash_32b, benchmark::PriorityLevel::HIGH); +BENCHMARK(SaltedOutpointHasherBench_hash, benchmark::PriorityLevel::HIGH); +BENCHMARK(SaltedOutpointHasherBench_match, benchmark::PriorityLevel::HIGH); +BENCHMARK(SaltedOutpointHasherBench_mismatch, benchmark::PriorityLevel::HIGH); +BENCHMARK(SaltedOutpointHasherBench_create_set, benchmark::PriorityLevel::HIGH); BENCHMARK(SHA256D64_1024_STANDARD, benchmark::PriorityLevel::HIGH); BENCHMARK(SHA256D64_1024_SSE4, benchmark::PriorityLevel::HIGH); BENCHMARK(SHA256D64_1024_AVX2, benchmark::PriorityLevel::HIGH); ``` </details> > cmake -B build -DBUILD_BENCH=ON -DCMAKE_BUILD_TYPE=Release && cmake --build build -j$(nproc) && build/bin/bench_bitcoin -filter='SaltedOutpointHasherBench' -min-time=10000 > Before: | ns/op | op/s | err% | total | benchmark |--------------------:|--------------------:|--------:|----------:|:---------- | 58.60 | 17,065,922.04 | 0.3% | 11.02 | `SaltedOutpointHasherBench_create_set` | 11.97 | 83,576,684.83 | 0.1% | 11.01 | `SaltedOutpointHasherBench_hash` | 14.50 | 68,985,850.12 | 0.3% | 10.96 | `SaltedOutpointHasherBench_match` | 13.90 | 71,942,033.47 | 0.4% | 11.03 | `SaltedOutpointHasherBench_mismatch` > After: | ns/op | op/s | err% | total | benchmark |--------------------:|--------------------:|--------:|----------:|:---------- | 57.27 | 17,462,299.19 | 0.1% | 11.02 | `SaltedOutpointHasherBench_create_set` | 11.24 | 88,997,888.48 | 0.3% | 11.04 | `SaltedOutpointHasherBench_hash` | 13.91 | 71,902,014.20 | 0.2% | 11.01 | `SaltedOutpointHasherBench_match` | 13.29 | 75,230,390.31 | 0.1% | 11.00 | `SaltedOutpointHasherBench_mismatch` compared to master: ```python create_set - 17,462,299.19 / 17,065,922.04 - 2.3% faster hash - 88,997,888.48 / 83,576,684.83 - 6.4% faster match - 71,902,014.20 / 68,985,850.12 - 4.2% faster mismatch - 75,230,390.31 / 71,942,033.47 - 4.5% faster ``` > C++ compiler .......................... GNU 13.3.0 > Before: | ns/op | op/s | err% | ins/op | cyc/op | IPC | bra/op | miss% | total | benchmark |--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:---------- | 136.76 | 7,312,133.16 | 0.0% | 1,086.67 | 491.12 | 2.213 | 119.54 | 1.1% | 11.01 | `SaltedOutpointHasherBench_create_set` | 23.82 | 41,978,882.62 | 0.0% | 252.01 | 85.57 | 2.945 | 4.00 | 0.0% | 11.00 | `SaltedOutpointHasherBench_hash` | 60.42 | 16,549,695.42 | 0.1% | 460.51 | 217.04 | 2.122 | 21.00 | 1.4% | 10.99 | `SaltedOutpointHasherBench_match` | 78.66 | 12,713,595.35 | 0.1% | 555.59 | 282.52 | 1.967 | 20.19 | 2.2% | 10.74 | `SaltedOutpointHasherBench_mismatch` > After: | ns/op | op/s | err% | ins/op | cyc/op | IPC | bra/op | miss% | total | benchmark |--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:---------- | 135.38 | 7,386,349.49 | 0.0% | 1,078.19 | 486.16 | 2.218 | 119.56 | 1.1% | 11.00 | `SaltedOutpointHasherBench_create_set` | 23.67 | 42,254,558.08 | 0.0% | 247.01 | 85.01 | 2.906 | 4.00 | 0.0% | 11.00 | `SaltedOutpointHasherBench_hash` | 58.95 | 16,962,220.14 | 0.1% | 446.55 | 211.74 | 2.109 | 20.86 | 1.4% | 11.01 | `SaltedOutpointHasherBench_match` | 76.98 | 12,991,047.69 | 0.1% | 548.93 | 276.50 | 1.985 | 20.25 | 2.3% | 10.72 | `SaltedOutpointHasherBench_mismatch` ```python compared to master: create_set - 7,386,349.49 / 7,312,133.16 - 1.0% faster hash - 42,254,558.08 / 41,978,882.62 - 0.6% faster match - 16,962,220.14 / 16,549,695.42 - 2.4% faster mismatch - 12,991,047.69 / 12,713,595.35 - 2.1% faster ``` ACKs for top commit: achow101: ACK6eb5ba5691vasild: ACK6eb5ba5691sipa: ACK6eb5ba5691Tree-SHA512: 9688b87e1d79f8af9efc18a8487922c5f1735487a9c5b78029dd46abc1d94f05d499cd1036bd615849aa7d6b17d11653c968086050dd7d04300403ebd0e81210
This commit is contained in:
@@ -193,13 +193,11 @@ static void SHA512(benchmark::Bench& bench)
|
||||
static void SipHash_32b(benchmark::Bench& bench)
|
||||
{
|
||||
FastRandomContext rng{/*fDeterministic=*/true};
|
||||
auto k0{rng.rand64()}, k1{rng.rand64()};
|
||||
PresaltedSipHasher presalted_sip_hasher(rng.rand64(), rng.rand64());
|
||||
auto val{rng.rand256()};
|
||||
auto i{0U};
|
||||
bench.run([&] {
|
||||
ankerl::nanobench::doNotOptimizeAway(SipHashUint256(k0, k1, val));
|
||||
++k0;
|
||||
++k1;
|
||||
ankerl::nanobench::doNotOptimizeAway(presalted_sip_hasher(val));
|
||||
++i;
|
||||
val.data()[i % uint256::size()] ^= i & 0xFF;
|
||||
});
|
||||
|
||||
@@ -17,11 +17,14 @@
|
||||
|
||||
#include <unordered_map>
|
||||
|
||||
CBlockHeaderAndShortTxIDs::CBlockHeaderAndShortTxIDs(const CBlock& block, const uint64_t nonce) :
|
||||
nonce(nonce),
|
||||
shorttxids(block.vtx.size() - 1), prefilledtxn(1), header(block) {
|
||||
CBlockHeaderAndShortTxIDs::CBlockHeaderAndShortTxIDs(const CBlock& block, uint64_t nonce)
|
||||
: nonce(nonce),
|
||||
shorttxids(block.vtx.size() - 1),
|
||||
prefilledtxn(1),
|
||||
header(block)
|
||||
{
|
||||
FillShortTxIDSelector();
|
||||
//TODO: Use our mempool prior to block acceptance to predictively fill more than just the coinbase
|
||||
// TODO: Use our mempool prior to block acceptance to predictively fill more than just the coinbase
|
||||
prefilledtxn[0] = {0, block.vtx[0]};
|
||||
for (size_t i = 1; i < block.vtx.size(); i++) {
|
||||
const CTransaction& tx = *block.vtx[i];
|
||||
@@ -29,20 +32,21 @@ CBlockHeaderAndShortTxIDs::CBlockHeaderAndShortTxIDs(const CBlock& block, const
|
||||
}
|
||||
}
|
||||
|
||||
void CBlockHeaderAndShortTxIDs::FillShortTxIDSelector() const {
|
||||
void CBlockHeaderAndShortTxIDs::FillShortTxIDSelector() const
|
||||
{
|
||||
DataStream stream{};
|
||||
stream << header << nonce;
|
||||
CSHA256 hasher;
|
||||
hasher.Write((unsigned char*)&(*stream.begin()), stream.end() - stream.begin());
|
||||
uint256 shorttxidhash;
|
||||
hasher.Finalize(shorttxidhash.begin());
|
||||
shorttxidk0 = shorttxidhash.GetUint64(0);
|
||||
shorttxidk1 = shorttxidhash.GetUint64(1);
|
||||
m_hasher.emplace(shorttxidhash.GetUint64(0), shorttxidhash.GetUint64(1));
|
||||
}
|
||||
|
||||
uint64_t CBlockHeaderAndShortTxIDs::GetShortID(const Wtxid& wtxid) const {
|
||||
uint64_t CBlockHeaderAndShortTxIDs::GetShortID(const Wtxid& wtxid) const
|
||||
{
|
||||
static_assert(SHORTTXIDS_LENGTH == 6, "shorttxids calculation assumes 6-byte shorttxids");
|
||||
return SipHashUint256(shorttxidk0, shorttxidk1, wtxid.ToUint256()) & 0xffffffffffffL;
|
||||
return (*Assert(m_hasher))(wtxid.ToUint256()) & 0xffffffffffffL;
|
||||
}
|
||||
|
||||
/* Reconstructing a compact block is in the hot-path for block relay,
|
||||
|
||||
@@ -5,6 +5,7 @@
|
||||
#ifndef BITCOIN_BLOCKENCODINGS_H
|
||||
#define BITCOIN_BLOCKENCODINGS_H
|
||||
|
||||
#include <crypto/siphash.h>
|
||||
#include <primitives/block.h>
|
||||
|
||||
#include <functional>
|
||||
@@ -87,8 +88,7 @@ typedef enum ReadStatus_t
|
||||
} ReadStatus;
|
||||
|
||||
class CBlockHeaderAndShortTxIDs {
|
||||
private:
|
||||
mutable uint64_t shorttxidk0, shorttxidk1;
|
||||
mutable std::optional<PresaltedSipHasher> m_hasher;
|
||||
uint64_t nonce;
|
||||
|
||||
void FillShortTxIDSelector() const;
|
||||
@@ -112,7 +112,7 @@ public:
|
||||
/**
|
||||
* @param[in] nonce This should be randomly generated, and is used for the siphash secret key
|
||||
*/
|
||||
CBlockHeaderAndShortTxIDs(const CBlock& block, const uint64_t nonce);
|
||||
CBlockHeaderAndShortTxIDs(const CBlock& block, uint64_t nonce);
|
||||
|
||||
uint64_t GetShortID(const Wtxid& wtxid) const;
|
||||
|
||||
|
||||
@@ -19,41 +19,33 @@
|
||||
v2 = std::rotl(v2, 32); \
|
||||
} while (0)
|
||||
|
||||
CSipHasher::CSipHasher(uint64_t k0, uint64_t k1)
|
||||
{
|
||||
v[0] = 0x736f6d6570736575ULL ^ k0;
|
||||
v[1] = 0x646f72616e646f6dULL ^ k1;
|
||||
v[2] = 0x6c7967656e657261ULL ^ k0;
|
||||
v[3] = 0x7465646279746573ULL ^ k1;
|
||||
count = 0;
|
||||
tmp = 0;
|
||||
}
|
||||
CSipHasher::CSipHasher(uint64_t k0, uint64_t k1) : m_state{k0, k1} {}
|
||||
|
||||
CSipHasher& CSipHasher::Write(uint64_t data)
|
||||
{
|
||||
uint64_t v0 = v[0], v1 = v[1], v2 = v[2], v3 = v[3];
|
||||
uint64_t v0 = m_state.v[0], v1 = m_state.v[1], v2 = m_state.v[2], v3 = m_state.v[3];
|
||||
|
||||
assert(count % 8 == 0);
|
||||
assert(m_count % 8 == 0);
|
||||
|
||||
v3 ^= data;
|
||||
SIPROUND;
|
||||
SIPROUND;
|
||||
v0 ^= data;
|
||||
|
||||
v[0] = v0;
|
||||
v[1] = v1;
|
||||
v[2] = v2;
|
||||
v[3] = v3;
|
||||
m_state.v[0] = v0;
|
||||
m_state.v[1] = v1;
|
||||
m_state.v[2] = v2;
|
||||
m_state.v[3] = v3;
|
||||
|
||||
count += 8;
|
||||
m_count += 8;
|
||||
return *this;
|
||||
}
|
||||
|
||||
CSipHasher& CSipHasher::Write(std::span<const unsigned char> data)
|
||||
{
|
||||
uint64_t v0 = v[0], v1 = v[1], v2 = v[2], v3 = v[3];
|
||||
uint64_t t = tmp;
|
||||
uint8_t c = count;
|
||||
uint64_t v0 = m_state.v[0], v1 = m_state.v[1], v2 = m_state.v[2], v3 = m_state.v[3];
|
||||
uint64_t t = m_tmp;
|
||||
uint8_t c = m_count;
|
||||
|
||||
while (data.size() > 0) {
|
||||
t |= uint64_t{data.front()} << (8 * (c % 8));
|
||||
@@ -68,21 +60,21 @@ CSipHasher& CSipHasher::Write(std::span<const unsigned char> data)
|
||||
data = data.subspan(1);
|
||||
}
|
||||
|
||||
v[0] = v0;
|
||||
v[1] = v1;
|
||||
v[2] = v2;
|
||||
v[3] = v3;
|
||||
count = c;
|
||||
tmp = t;
|
||||
m_state.v[0] = v0;
|
||||
m_state.v[1] = v1;
|
||||
m_state.v[2] = v2;
|
||||
m_state.v[3] = v3;
|
||||
m_count = c;
|
||||
m_tmp = t;
|
||||
|
||||
return *this;
|
||||
}
|
||||
|
||||
uint64_t CSipHasher::Finalize() const
|
||||
{
|
||||
uint64_t v0 = v[0], v1 = v[1], v2 = v[2], v3 = v[3];
|
||||
uint64_t v0 = m_state.v[0], v1 = m_state.v[1], v2 = m_state.v[2], v3 = m_state.v[3];
|
||||
|
||||
uint64_t t = tmp | (((uint64_t)count) << 56);
|
||||
uint64_t t = m_tmp | (((uint64_t)m_count) << 56);
|
||||
|
||||
v3 ^= t;
|
||||
SIPROUND;
|
||||
@@ -96,15 +88,11 @@ uint64_t CSipHasher::Finalize() const
|
||||
return v0 ^ v1 ^ v2 ^ v3;
|
||||
}
|
||||
|
||||
uint64_t SipHashUint256(uint64_t k0, uint64_t k1, const uint256& val)
|
||||
uint64_t PresaltedSipHasher::operator()(const uint256& val) const noexcept
|
||||
{
|
||||
/* Specialized implementation for efficiency */
|
||||
uint64_t v0 = m_state.v[0], v1 = m_state.v[1], v2 = m_state.v[2], v3 = m_state.v[3];
|
||||
uint64_t d = val.GetUint64(0);
|
||||
|
||||
uint64_t v0 = 0x736f6d6570736575ULL ^ k0;
|
||||
uint64_t v1 = 0x646f72616e646f6dULL ^ k1;
|
||||
uint64_t v2 = 0x6c7967656e657261ULL ^ k0;
|
||||
uint64_t v3 = 0x7465646279746573ULL ^ k1 ^ d;
|
||||
v3 ^= d;
|
||||
|
||||
SIPROUND;
|
||||
SIPROUND;
|
||||
@@ -136,16 +124,12 @@ uint64_t SipHashUint256(uint64_t k0, uint64_t k1, const uint256& val)
|
||||
return v0 ^ v1 ^ v2 ^ v3;
|
||||
}
|
||||
|
||||
uint64_t SipHashUint256Extra(uint64_t k0, uint64_t k1, const uint256& val, uint32_t extra)
|
||||
/** Specialized implementation for efficiency */
|
||||
uint64_t PresaltedSipHasher::operator()(const uint256& val, uint32_t extra) const noexcept
|
||||
{
|
||||
/* Specialized implementation for efficiency */
|
||||
uint64_t v0 = m_state.v[0], v1 = m_state.v[1], v2 = m_state.v[2], v3 = m_state.v[3];
|
||||
uint64_t d = val.GetUint64(0);
|
||||
|
||||
uint64_t v0 = 0x736f6d6570736575ULL ^ k0;
|
||||
uint64_t v1 = 0x646f72616e646f6dULL ^ k1;
|
||||
uint64_t v2 = 0x6c7967656e657261ULL ^ k0;
|
||||
uint64_t v3 = 0x7465646279746573ULL ^ k1 ^ d;
|
||||
|
||||
v3 ^= d;
|
||||
SIPROUND;
|
||||
SIPROUND;
|
||||
v0 ^= d;
|
||||
|
||||
@@ -5,23 +5,34 @@
|
||||
#ifndef BITCOIN_CRYPTO_SIPHASH_H
|
||||
#define BITCOIN_CRYPTO_SIPHASH_H
|
||||
|
||||
#include <array>
|
||||
#include <cstdint>
|
||||
#include <span>
|
||||
|
||||
class uint256;
|
||||
|
||||
/** SipHash-2-4 */
|
||||
class CSipHasher
|
||||
/** Shared SipHash internal state v[0..3], initialized from (k0, k1). */
|
||||
class SipHashState
|
||||
{
|
||||
private:
|
||||
uint64_t v[4];
|
||||
uint64_t tmp;
|
||||
uint8_t count; // Only the low 8 bits of the input size matter.
|
||||
static constexpr uint64_t C0{0x736f6d6570736575ULL}, C1{0x646f72616e646f6dULL}, C2{0x6c7967656e657261ULL}, C3{0x7465646279746573ULL};
|
||||
|
||||
public:
|
||||
/** Construct a SipHash calculator initialized with 128-bit key (k0, k1) */
|
||||
explicit SipHashState(uint64_t k0, uint64_t k1) noexcept : v{C0 ^ k0, C1 ^ k1, C2 ^ k0, C3 ^ k1} {}
|
||||
|
||||
std::array<uint64_t, 4> v{};
|
||||
};
|
||||
|
||||
/** General SipHash-2-4 implementation. */
|
||||
class CSipHasher
|
||||
{
|
||||
SipHashState m_state;
|
||||
uint64_t m_tmp{0};
|
||||
uint8_t m_count{0}; //!< Only the low 8 bits of the input size matter.
|
||||
|
||||
public:
|
||||
/** Construct a SipHash calculator initialized with 128-bit key (k0, k1). */
|
||||
CSipHasher(uint64_t k0, uint64_t k1);
|
||||
/** Hash a 64-bit integer worth of data
|
||||
/** Hash a 64-bit integer worth of data.
|
||||
* It is treated as if this was the little-endian interpretation of 8 bytes.
|
||||
* This function can only be used when a multiple of 8 bytes have been written so far.
|
||||
*/
|
||||
@@ -32,17 +43,30 @@ public:
|
||||
uint64_t Finalize() const;
|
||||
};
|
||||
|
||||
/** Optimized SipHash-2-4 implementation for uint256.
|
||||
/**
|
||||
* Optimized SipHash-2-4 implementation for uint256.
|
||||
*
|
||||
* It is identical to:
|
||||
* SipHasher(k0, k1)
|
||||
* .Write(val.GetUint64(0))
|
||||
* .Write(val.GetUint64(1))
|
||||
* .Write(val.GetUint64(2))
|
||||
* .Write(val.GetUint64(3))
|
||||
* .Finalize()
|
||||
* This class caches the initial SipHash v[0..3] state derived from (k0, k1)
|
||||
* and implements a specialized hashing path for uint256 values, with or
|
||||
* without an extra 32-bit word. The internal state is immutable, so
|
||||
* PresaltedSipHasher instances can be reused for multiple hashes with the
|
||||
* same key.
|
||||
*/
|
||||
uint64_t SipHashUint256(uint64_t k0, uint64_t k1, const uint256& val);
|
||||
uint64_t SipHashUint256Extra(uint64_t k0, uint64_t k1, const uint256& val, uint32_t extra);
|
||||
class PresaltedSipHasher
|
||||
{
|
||||
const SipHashState m_state;
|
||||
|
||||
public:
|
||||
explicit PresaltedSipHasher(uint64_t k0, uint64_t k1) noexcept : m_state{k0, k1} {}
|
||||
|
||||
/** Equivalent to CSipHasher(k0, k1).Write(val).Finalize(). */
|
||||
uint64_t operator()(const uint256& val) const noexcept;
|
||||
|
||||
/**
|
||||
* Equivalent to CSipHasher(k0, k1).Write(val).Write(extra).Finalize(),
|
||||
* with `extra` encoded as 4 little-endian bytes.
|
||||
*/
|
||||
uint64_t operator()(const uint256& val, uint32_t extra) const noexcept;
|
||||
};
|
||||
|
||||
#endif // BITCOIN_CRYPTO_SIPHASH_H
|
||||
|
||||
@@ -118,8 +118,8 @@ FUZZ_TARGET(integer, .init = initialize_integer)
|
||||
}
|
||||
(void)MillisToTimeval(i64);
|
||||
(void)SighashToStr(uch);
|
||||
(void)SipHashUint256(u64, u64, u256);
|
||||
(void)SipHashUint256Extra(u64, u64, u256, u32);
|
||||
(void)PresaltedSipHasher(u64, u64)(u256);
|
||||
(void)PresaltedSipHasher(u64, u64)(u256, u32);
|
||||
(void)ToLower(ch);
|
||||
(void)ToUpper(ch);
|
||||
{
|
||||
|
||||
@@ -104,7 +104,7 @@ BOOST_AUTO_TEST_CASE(siphash)
|
||||
hasher.Write(0x2F2E2D2C2B2A2928ULL);
|
||||
BOOST_CHECK_EQUAL(hasher.Finalize(), 0xe612a3cb9ecba951ull);
|
||||
|
||||
BOOST_CHECK_EQUAL(SipHashUint256(0x0706050403020100ULL, 0x0F0E0D0C0B0A0908ULL, uint256{"1f1e1d1c1b1a191817161514131211100f0e0d0c0b0a09080706050403020100"}), 0x7127512f72f27cceull);
|
||||
BOOST_CHECK_EQUAL(PresaltedSipHasher(0x0706050403020100ULL, 0x0F0E0D0C0B0A0908ULL)(uint256{"1f1e1d1c1b1a191817161514131211100f0e0d0c0b0a09080706050403020100"}), 0x7127512f72f27cceull);
|
||||
|
||||
// Check test vectors from spec, one byte at a time
|
||||
CSipHasher hasher2(0x0706050403020100ULL, 0x0F0E0D0C0B0A0908ULL);
|
||||
@@ -128,23 +128,25 @@ BOOST_AUTO_TEST_CASE(siphash)
|
||||
// and the test would be affected by default tx version bumps if not fixed.
|
||||
tx.version = 1;
|
||||
ss << TX_WITH_WITNESS(tx);
|
||||
BOOST_CHECK_EQUAL(SipHashUint256(1, 2, ss.GetHash()), 0x79751e980c2a0a35ULL);
|
||||
BOOST_CHECK_EQUAL(PresaltedSipHasher(1, 2)(ss.GetHash()), 0x79751e980c2a0a35ULL);
|
||||
|
||||
// Check consistency between CSipHasher and SipHashUint256[Extra].
|
||||
// Check consistency between CSipHasher and PresaltedSipHasher.
|
||||
FastRandomContext ctx;
|
||||
for (int i = 0; i < 16; ++i) {
|
||||
uint64_t k0 = ctx.rand64();
|
||||
uint64_t k1 = ctx.rand64();
|
||||
uint64_t k2 = ctx.rand64();
|
||||
uint256 x = m_rng.rand256();
|
||||
|
||||
CSipHasher sip256(k0, k1);
|
||||
sip256.Write(x);
|
||||
BOOST_CHECK_EQUAL(PresaltedSipHasher(k0, k1)(x), sip256.Finalize());
|
||||
|
||||
CSipHasher sip288 = sip256;
|
||||
uint32_t n = ctx.rand32();
|
||||
uint8_t nb[4];
|
||||
WriteLE32(nb, n);
|
||||
CSipHasher sip256(k1, k2);
|
||||
sip256.Write(x);
|
||||
CSipHasher sip288 = sip256;
|
||||
sip288.Write(nb);
|
||||
BOOST_CHECK_EQUAL(SipHashUint256(k1, k2, x), sip256.Finalize());
|
||||
BOOST_CHECK_EQUAL(SipHashUint256Extra(k1, k2, x, n), sip288.Finalize());
|
||||
BOOST_CHECK_EQUAL(PresaltedSipHasher(k0, k1)(x, n), sip288.Finalize());
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -7,26 +7,30 @@
|
||||
#include <span.h>
|
||||
#include <util/hasher.h>
|
||||
|
||||
SaltedUint256Hasher::SaltedUint256Hasher() :
|
||||
k0{FastRandomContext().rand64()},
|
||||
k1{FastRandomContext().rand64()} {}
|
||||
SaltedUint256Hasher::SaltedUint256Hasher() : m_hasher{
|
||||
FastRandomContext().rand64(),
|
||||
FastRandomContext().rand64()}
|
||||
{}
|
||||
|
||||
SaltedTxidHasher::SaltedTxidHasher() :
|
||||
k0{FastRandomContext().rand64()},
|
||||
k1{FastRandomContext().rand64()} {}
|
||||
SaltedTxidHasher::SaltedTxidHasher() : m_hasher{
|
||||
FastRandomContext().rand64(),
|
||||
FastRandomContext().rand64()}
|
||||
{}
|
||||
|
||||
SaltedWtxidHasher::SaltedWtxidHasher() :
|
||||
k0{FastRandomContext().rand64()},
|
||||
k1{FastRandomContext().rand64()} {}
|
||||
SaltedWtxidHasher::SaltedWtxidHasher() : m_hasher{
|
||||
FastRandomContext().rand64(),
|
||||
FastRandomContext().rand64()}
|
||||
{}
|
||||
|
||||
SaltedOutpointHasher::SaltedOutpointHasher(bool deterministic) :
|
||||
k0{deterministic ? 0x8e819f2607a18de6 : FastRandomContext().rand64()},
|
||||
k1{deterministic ? 0xf4020d2e3983b0eb : FastRandomContext().rand64()}
|
||||
SaltedOutpointHasher::SaltedOutpointHasher(bool deterministic) : m_hasher{
|
||||
deterministic ? 0x8e819f2607a18de6 : FastRandomContext().rand64(),
|
||||
deterministic ? 0xf4020d2e3983b0eb : FastRandomContext().rand64()}
|
||||
{}
|
||||
|
||||
SaltedSipHasher::SaltedSipHasher() :
|
||||
m_k0{FastRandomContext().rand64()},
|
||||
m_k1{FastRandomContext().rand64()} {}
|
||||
m_k1{FastRandomContext().rand64()}
|
||||
{}
|
||||
|
||||
size_t SaltedSipHasher::operator()(const std::span<const unsigned char>& script) const
|
||||
{
|
||||
|
||||
@@ -17,52 +17,46 @@
|
||||
|
||||
class SaltedUint256Hasher
|
||||
{
|
||||
private:
|
||||
/** Salt */
|
||||
const uint64_t k0, k1;
|
||||
const PresaltedSipHasher m_hasher;
|
||||
|
||||
public:
|
||||
SaltedUint256Hasher();
|
||||
|
||||
size_t operator()(const uint256& hash) const {
|
||||
return SipHashUint256(k0, k1, hash);
|
||||
size_t operator()(const uint256& hash) const
|
||||
{
|
||||
return m_hasher(hash);
|
||||
}
|
||||
};
|
||||
|
||||
class SaltedTxidHasher
|
||||
{
|
||||
private:
|
||||
/** Salt */
|
||||
const uint64_t k0, k1;
|
||||
const PresaltedSipHasher m_hasher;
|
||||
|
||||
public:
|
||||
SaltedTxidHasher();
|
||||
|
||||
size_t operator()(const Txid& txid) const {
|
||||
return SipHashUint256(k0, k1, txid.ToUint256());
|
||||
size_t operator()(const Txid& txid) const
|
||||
{
|
||||
return m_hasher(txid.ToUint256());
|
||||
}
|
||||
};
|
||||
|
||||
class SaltedWtxidHasher
|
||||
{
|
||||
private:
|
||||
/** Salt */
|
||||
const uint64_t k0, k1;
|
||||
const PresaltedSipHasher m_hasher;
|
||||
|
||||
public:
|
||||
SaltedWtxidHasher();
|
||||
|
||||
size_t operator()(const Wtxid& wtxid) const {
|
||||
return SipHashUint256(k0, k1, wtxid.ToUint256());
|
||||
size_t operator()(const Wtxid& wtxid) const
|
||||
{
|
||||
return m_hasher(wtxid.ToUint256());
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
class SaltedOutpointHasher
|
||||
{
|
||||
private:
|
||||
/** Salt */
|
||||
const uint64_t k0, k1;
|
||||
const PresaltedSipHasher m_hasher;
|
||||
|
||||
public:
|
||||
SaltedOutpointHasher(bool deterministic = false);
|
||||
@@ -76,13 +70,13 @@ public:
|
||||
*
|
||||
* @see https://gcc.gnu.org/onlinedocs/gcc-13.2.0/libstdc++/manual/manual/unordered_associative.html
|
||||
*/
|
||||
size_t operator()(const COutPoint& id) const noexcept {
|
||||
return SipHashUint256Extra(k0, k1, id.hash.ToUint256(), id.n);
|
||||
size_t operator()(const COutPoint& id) const noexcept
|
||||
{
|
||||
return m_hasher(id.hash.ToUint256(), id.n);
|
||||
}
|
||||
};
|
||||
|
||||
struct FilterHeaderHasher
|
||||
{
|
||||
struct FilterHeaderHasher {
|
||||
size_t operator()(const uint256& hash) const { return ReadLE64(hash.begin()); }
|
||||
};
|
||||
|
||||
|
||||
Reference in New Issue
Block a user