mirror of
https://github.com/bitcoin/bitcoin.git
synced 2025-06-03 19:51:32 +02:00
net: add V2Transport class with subset of BIP324 functionality
This introduces a V2Transport with a basic subset of BIP324 functionality: * no ability to send garbage (but receiving is supported) * no ability to send decoy packets (but receiving them is supported) * no support for short message id encoding (neither encoding or decoding) * no waiting until 12 non-V1 bytes have been received * (and thus) no detection of V1 connections on the responder side (on the sender side, detecting V1 is not supported either, but that needs to be dealt with at a higher layer, by reconnecting)
This commit is contained in:
parent
dc2d7eb810
commit
13a7f01557
427
src/net.cpp
427
src/net.cpp
@ -913,6 +913,427 @@ size_t V1Transport::GetSendMemoryUsage() const noexcept
|
||||
return m_message_to_send.GetMemoryUsage();
|
||||
}
|
||||
|
||||
V2Transport::V2Transport(NodeId nodeid, bool initiating, int type_in, int version_in) noexcept :
|
||||
m_cipher{}, m_initiating{initiating}, m_nodeid{nodeid},
|
||||
m_recv_type{type_in}, m_recv_version{version_in},
|
||||
m_recv_state{RecvState::KEY},
|
||||
m_send_state{SendState::AWAITING_KEY}
|
||||
{
|
||||
// Initialize the send buffer with ellswift pubkey.
|
||||
m_send_buffer.resize(EllSwiftPubKey::size());
|
||||
std::copy(std::begin(m_cipher.GetOurPubKey()), std::end(m_cipher.GetOurPubKey()), MakeWritableByteSpan(m_send_buffer).begin());
|
||||
}
|
||||
|
||||
V2Transport::V2Transport(NodeId nodeid, bool initiating, int type_in, int version_in, const CKey& key, Span<const std::byte> ent32) noexcept :
|
||||
m_cipher{key, ent32}, m_initiating{initiating}, m_nodeid{nodeid},
|
||||
m_recv_type{type_in}, m_recv_version{version_in},
|
||||
m_recv_state{RecvState::KEY},
|
||||
m_send_state{SendState::AWAITING_KEY}
|
||||
{
|
||||
// Initialize the send buffer with ellswift pubkey.
|
||||
m_send_buffer.resize(EllSwiftPubKey::size());
|
||||
std::copy(std::begin(m_cipher.GetOurPubKey()), std::end(m_cipher.GetOurPubKey()), MakeWritableByteSpan(m_send_buffer).begin());
|
||||
}
|
||||
|
||||
void V2Transport::SetReceiveState(RecvState recv_state) noexcept
|
||||
{
|
||||
AssertLockHeld(m_recv_mutex);
|
||||
// Enforce allowed state transitions.
|
||||
switch (m_recv_state) {
|
||||
case RecvState::KEY:
|
||||
Assume(recv_state == RecvState::GARB_GARBTERM);
|
||||
break;
|
||||
case RecvState::GARB_GARBTERM:
|
||||
Assume(recv_state == RecvState::GARBAUTH);
|
||||
break;
|
||||
case RecvState::GARBAUTH:
|
||||
Assume(recv_state == RecvState::VERSION);
|
||||
break;
|
||||
case RecvState::VERSION:
|
||||
Assume(recv_state == RecvState::APP);
|
||||
break;
|
||||
case RecvState::APP:
|
||||
Assume(recv_state == RecvState::APP_READY);
|
||||
break;
|
||||
case RecvState::APP_READY:
|
||||
Assume(recv_state == RecvState::APP);
|
||||
break;
|
||||
}
|
||||
// Change state.
|
||||
m_recv_state = recv_state;
|
||||
}
|
||||
|
||||
void V2Transport::SetSendState(SendState send_state) noexcept
|
||||
{
|
||||
AssertLockHeld(m_send_mutex);
|
||||
// Enforce allowed state transitions.
|
||||
switch (m_send_state) {
|
||||
case SendState::AWAITING_KEY:
|
||||
Assume(send_state == SendState::READY);
|
||||
break;
|
||||
case SendState::READY:
|
||||
Assume(false); // Final state
|
||||
break;
|
||||
}
|
||||
// Change state.
|
||||
m_send_state = send_state;
|
||||
}
|
||||
|
||||
bool V2Transport::ReceivedMessageComplete() const noexcept
|
||||
{
|
||||
AssertLockNotHeld(m_recv_mutex);
|
||||
LOCK(m_recv_mutex);
|
||||
return m_recv_state == RecvState::APP_READY;
|
||||
}
|
||||
|
||||
void V2Transport::ProcessReceivedKeyBytes() noexcept
|
||||
{
|
||||
AssertLockHeld(m_recv_mutex);
|
||||
AssertLockNotHeld(m_send_mutex);
|
||||
Assume(m_recv_state == RecvState::KEY);
|
||||
Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
|
||||
if (m_recv_buffer.size() == EllSwiftPubKey::size()) {
|
||||
// Other side's key has been fully received, and can now be Diffie-Hellman combined with
|
||||
// our key to initialize the encryption ciphers.
|
||||
|
||||
// Initialize the ciphers.
|
||||
EllSwiftPubKey ellswift(MakeByteSpan(m_recv_buffer));
|
||||
LOCK(m_send_mutex);
|
||||
m_cipher.Initialize(ellswift, m_initiating);
|
||||
|
||||
// Switch receiver state to GARB_GARBTERM.
|
||||
SetReceiveState(RecvState::GARB_GARBTERM);
|
||||
m_recv_buffer.clear();
|
||||
|
||||
// Switch sender state to READY.
|
||||
SetSendState(SendState::READY);
|
||||
|
||||
// Append the garbage terminator to the send buffer.
|
||||
m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
|
||||
std::copy(m_cipher.GetSendGarbageTerminator().begin(),
|
||||
m_cipher.GetSendGarbageTerminator().end(),
|
||||
MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN).begin());
|
||||
|
||||
// Construct garbage authentication packet in the send buffer.
|
||||
m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::EXPANSION);
|
||||
m_cipher.Encrypt(
|
||||
/*contents=*/{},
|
||||
/*aad=*/{}, /* empty garbage for now */
|
||||
/*ignore=*/false,
|
||||
/*output=*/MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::EXPANSION));
|
||||
|
||||
// Construct version packet in the send buffer.
|
||||
m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::EXPANSION + VERSION_CONTENTS.size());
|
||||
m_cipher.Encrypt(
|
||||
/*contents=*/VERSION_CONTENTS,
|
||||
/*aad=*/{},
|
||||
/*ignore=*/false,
|
||||
/*output=*/MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::EXPANSION + VERSION_CONTENTS.size()));
|
||||
} else {
|
||||
// We still have to receive more key bytes.
|
||||
}
|
||||
}
|
||||
|
||||
bool V2Transport::ProcessReceivedGarbageBytes() noexcept
|
||||
{
|
||||
AssertLockHeld(m_recv_mutex);
|
||||
Assume(m_recv_state == RecvState::GARB_GARBTERM);
|
||||
Assume(m_recv_buffer.size() <= MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
|
||||
if (m_recv_buffer.size() >= BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
|
||||
if (MakeByteSpan(m_recv_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN) == m_cipher.GetReceiveGarbageTerminator()) {
|
||||
// Garbage terminator received. Switch to receiving garbage authentication packet.
|
||||
m_recv_garbage = std::move(m_recv_buffer);
|
||||
m_recv_garbage.resize(m_recv_garbage.size() - BIP324Cipher::GARBAGE_TERMINATOR_LEN);
|
||||
m_recv_buffer.clear();
|
||||
SetReceiveState(RecvState::GARBAUTH);
|
||||
} else if (m_recv_buffer.size() == MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
|
||||
// We've reached the maximum length for garbage + garbage terminator, and the
|
||||
// terminator still does not match. Abort.
|
||||
LogPrint(BCLog::NET, "V2 transport error: missing garbage terminator, peer=%d\n", m_nodeid);
|
||||
return false;
|
||||
} else {
|
||||
// We still need to receive more garbage and/or garbage terminator bytes.
|
||||
}
|
||||
} else {
|
||||
// We have less than GARBAGE_TERMINATOR_LEN (16) bytes, so we certainly need to receive
|
||||
// more first.
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool V2Transport::ProcessReceivedPacketBytes() noexcept
|
||||
{
|
||||
AssertLockHeld(m_recv_mutex);
|
||||
Assume(m_recv_state == RecvState::GARBAUTH || m_recv_state == RecvState::VERSION ||
|
||||
m_recv_state == RecvState::APP);
|
||||
|
||||
// The maximum permitted contents length for a packet, consisting of:
|
||||
// - 0x00 byte: indicating long message type encoding
|
||||
// - 12 bytes of message type
|
||||
// - payload
|
||||
static constexpr size_t MAX_CONTENTS_LEN =
|
||||
1 + CMessageHeader::COMMAND_SIZE +
|
||||
std::min<size_t>(MAX_SIZE, MAX_PROTOCOL_MESSAGE_LENGTH);
|
||||
|
||||
if (m_recv_buffer.size() == BIP324Cipher::LENGTH_LEN) {
|
||||
// Length descriptor received.
|
||||
m_recv_len = m_cipher.DecryptLength(MakeByteSpan(m_recv_buffer));
|
||||
if (m_recv_len > MAX_CONTENTS_LEN) {
|
||||
LogPrint(BCLog::NET, "V2 transport error: packet too large (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
|
||||
return false;
|
||||
}
|
||||
} else if (m_recv_buffer.size() > BIP324Cipher::LENGTH_LEN && m_recv_buffer.size() == m_recv_len + BIP324Cipher::EXPANSION) {
|
||||
// Ciphertext received, decrypt it into m_recv_decode_buffer.
|
||||
// Note that it is impossible to reach this branch without hitting the branch above first,
|
||||
// as GetMaxBytesToProcess only allows up to LENGTH_LEN into the buffer before that point.
|
||||
m_recv_decode_buffer.resize(m_recv_len);
|
||||
bool ignore{false};
|
||||
Span<const std::byte> aad;
|
||||
if (m_recv_state == RecvState::GARBAUTH) aad = MakeByteSpan(m_recv_garbage);
|
||||
bool ret = m_cipher.Decrypt(
|
||||
/*input=*/MakeByteSpan(m_recv_buffer).subspan(BIP324Cipher::LENGTH_LEN),
|
||||
/*aad=*/aad,
|
||||
/*ignore=*/ignore,
|
||||
/*contents=*/MakeWritableByteSpan(m_recv_decode_buffer));
|
||||
if (!ret) {
|
||||
LogPrint(BCLog::NET, "V2 transport error: packet decryption failure (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
|
||||
return false;
|
||||
}
|
||||
// Feed the last 4 bytes of the Poly1305 authentication tag (and its timing) into our RNG.
|
||||
RandAddEvent(ReadLE32(m_recv_buffer.data() + m_recv_buffer.size() - 4));
|
||||
|
||||
// At this point we have a valid packet decrypted into m_recv_decode_buffer. Depending on
|
||||
// the current state, decide what to do with it.
|
||||
switch (m_recv_state) {
|
||||
case RecvState::GARBAUTH:
|
||||
// Ignore flag does not matter for garbage authentication. Any valid packet functions
|
||||
// as authentication. Receive and process the version packet next.
|
||||
SetReceiveState(RecvState::VERSION);
|
||||
m_recv_garbage = {};
|
||||
break;
|
||||
case RecvState::VERSION:
|
||||
if (!ignore) {
|
||||
// Version message received; transition to application phase. The contents is
|
||||
// ignored, but can be used for future extensions.
|
||||
SetReceiveState(RecvState::APP);
|
||||
}
|
||||
break;
|
||||
case RecvState::APP:
|
||||
if (!ignore) {
|
||||
// Application message decrypted correctly. It can be extracted using GetMessage().
|
||||
SetReceiveState(RecvState::APP_READY);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
// Any other state is invalid (this function should not have been called).
|
||||
Assume(false);
|
||||
}
|
||||
// Wipe the receive buffer where the next packet will be received into.
|
||||
m_recv_buffer = {};
|
||||
// In all but APP_READY state, we can wipe the decoded contents.
|
||||
if (m_recv_state != RecvState::APP_READY) m_recv_decode_buffer = {};
|
||||
} else {
|
||||
// We either have less than 3 bytes, so we don't know the packet's length yet, or more
|
||||
// than 3 bytes but less than the packet's full ciphertext. Wait until those arrive.
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
size_t V2Transport::GetMaxBytesToProcess() noexcept
|
||||
{
|
||||
AssertLockHeld(m_recv_mutex);
|
||||
switch (m_recv_state) {
|
||||
case RecvState::KEY:
|
||||
// During the KEY state, we only allow the 64-byte key into the receive buffer.
|
||||
Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
|
||||
// As long as we have not received the other side's public key, don't receive more than
|
||||
// that (64 bytes), as garbage follows, and locating the garbage terminator requires the
|
||||
// key exchange first.
|
||||
return EllSwiftPubKey::size() - m_recv_buffer.size();
|
||||
case RecvState::GARB_GARBTERM:
|
||||
// Process garbage bytes one by one (because terminator may appear anywhere).
|
||||
return 1;
|
||||
case RecvState::GARBAUTH:
|
||||
case RecvState::VERSION:
|
||||
case RecvState::APP:
|
||||
// These three states all involve decoding a packet. Process the length descriptor first,
|
||||
// so that we know where the current packet ends (and we don't process bytes from the next
|
||||
// packet or decoy yet). Then, process the ciphertext bytes of the current packet.
|
||||
if (m_recv_buffer.size() < BIP324Cipher::LENGTH_LEN) {
|
||||
return BIP324Cipher::LENGTH_LEN - m_recv_buffer.size();
|
||||
} else {
|
||||
// Note that BIP324Cipher::EXPANSION is the total difference between contents size
|
||||
// and encoded packet size, which includes the 3 bytes due to the packet length.
|
||||
// When transitioning from receiving the packet length to receiving its ciphertext,
|
||||
// the encrypted packet length is left in the receive buffer.
|
||||
return BIP324Cipher::EXPANSION + m_recv_len - m_recv_buffer.size();
|
||||
}
|
||||
case RecvState::APP_READY:
|
||||
// No bytes can be processed until GetMessage() is called.
|
||||
return 0;
|
||||
}
|
||||
Assume(false); // unreachable
|
||||
return 0;
|
||||
}
|
||||
|
||||
bool V2Transport::ReceivedBytes(Span<const uint8_t>& msg_bytes) noexcept
|
||||
{
|
||||
AssertLockNotHeld(m_recv_mutex);
|
||||
LOCK(m_recv_mutex);
|
||||
// Process the provided bytes in msg_bytes in a loop. In each iteration a nonzero number of
|
||||
// bytes (decided by GetMaxBytesToProcess) are taken from the beginning om msg_bytes, and
|
||||
// appended to m_recv_buffer. Then, depending on the receiver state, one of the
|
||||
// ProcessReceived*Bytes functions is called to process the bytes in that buffer.
|
||||
while (!msg_bytes.empty()) {
|
||||
// Decide how many bytes to copy from msg_bytes to m_recv_buffer.
|
||||
size_t max_read = GetMaxBytesToProcess();
|
||||
// Can't read more than provided input.
|
||||
max_read = std::min(msg_bytes.size(), max_read);
|
||||
// Copy data to buffer.
|
||||
m_recv_buffer.insert(m_recv_buffer.end(), UCharCast(msg_bytes.data()), UCharCast(msg_bytes.data() + max_read));
|
||||
msg_bytes = msg_bytes.subspan(max_read);
|
||||
|
||||
// Process data in the buffer.
|
||||
switch (m_recv_state) {
|
||||
case RecvState::KEY:
|
||||
ProcessReceivedKeyBytes();
|
||||
break;
|
||||
|
||||
case RecvState::GARB_GARBTERM:
|
||||
if (!ProcessReceivedGarbageBytes()) return false;
|
||||
break;
|
||||
|
||||
case RecvState::GARBAUTH:
|
||||
case RecvState::VERSION:
|
||||
case RecvState::APP:
|
||||
if (!ProcessReceivedPacketBytes()) return false;
|
||||
break;
|
||||
|
||||
case RecvState::APP_READY:
|
||||
return true;
|
||||
}
|
||||
// Make sure we have made progress before continuing.
|
||||
Assume(max_read > 0);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
std::optional<std::string> V2Transport::GetMessageType(Span<const uint8_t>& contents) noexcept
|
||||
{
|
||||
if (contents.size() == 0) return std::nullopt; // Empty contents
|
||||
uint8_t first_byte = contents[0];
|
||||
contents = contents.subspan(1); // Strip first byte.
|
||||
|
||||
if (first_byte != 0) return std::nullopt; // TODO: implement short encoding
|
||||
|
||||
if (contents.size() < CMessageHeader::COMMAND_SIZE) {
|
||||
return std::nullopt; // Long encoding needs 12 message type bytes.
|
||||
}
|
||||
|
||||
size_t msg_type_len{0};
|
||||
while (msg_type_len < CMessageHeader::COMMAND_SIZE && contents[msg_type_len] != 0) {
|
||||
// Verify that message type bytes before the first 0x00 are in range.
|
||||
if (contents[msg_type_len] < ' ' || contents[msg_type_len] > 0x7F) {
|
||||
return {};
|
||||
}
|
||||
++msg_type_len;
|
||||
}
|
||||
std::string ret{reinterpret_cast<const char*>(contents.data()), msg_type_len};
|
||||
while (msg_type_len < CMessageHeader::COMMAND_SIZE) {
|
||||
// Verify that message type bytes after the first 0x00 are also 0x00.
|
||||
if (contents[msg_type_len] != 0) return {};
|
||||
++msg_type_len;
|
||||
}
|
||||
// Strip message type bytes of contents.
|
||||
contents = contents.subspan(CMessageHeader::COMMAND_SIZE);
|
||||
return {std::move(ret)};
|
||||
}
|
||||
|
||||
CNetMessage V2Transport::GetReceivedMessage(std::chrono::microseconds time, bool& reject_message) noexcept
|
||||
{
|
||||
AssertLockNotHeld(m_recv_mutex);
|
||||
LOCK(m_recv_mutex);
|
||||
Assume(m_recv_state == RecvState::APP_READY);
|
||||
Span<const uint8_t> contents{m_recv_decode_buffer};
|
||||
auto msg_type = GetMessageType(contents);
|
||||
CDataStream ret(m_recv_type, m_recv_version);
|
||||
CNetMessage msg{std::move(ret)};
|
||||
// Note that BIP324Cipher::EXPANSION also includes the length descriptor size.
|
||||
msg.m_raw_message_size = m_recv_decode_buffer.size() + BIP324Cipher::EXPANSION;
|
||||
if (msg_type) {
|
||||
reject_message = false;
|
||||
msg.m_type = std::move(*msg_type);
|
||||
msg.m_time = time;
|
||||
msg.m_message_size = contents.size();
|
||||
msg.m_recv.resize(contents.size());
|
||||
std::copy(contents.begin(), contents.end(), UCharCast(msg.m_recv.data()));
|
||||
} else {
|
||||
LogPrint(BCLog::NET, "V2 transport error: invalid message type (%u bytes contents), peer=%d\n", m_recv_decode_buffer.size(), m_nodeid);
|
||||
reject_message = true;
|
||||
}
|
||||
m_recv_decode_buffer = {};
|
||||
SetReceiveState(RecvState::APP);
|
||||
|
||||
return msg;
|
||||
}
|
||||
|
||||
bool V2Transport::SetMessageToSend(CSerializedNetMsg& msg) noexcept
|
||||
{
|
||||
AssertLockNotHeld(m_send_mutex);
|
||||
LOCK(m_send_mutex);
|
||||
// We only allow adding a new message to be sent when in the READY state (so the packet cipher
|
||||
// is available) and the send buffer is empty. This limits the number of messages in the send
|
||||
// buffer to just one, and leaves the responsibility for queueing them up to the caller.
|
||||
if (!(m_send_state == SendState::READY && m_send_buffer.empty())) return false;
|
||||
// Construct contents (encoding message type + payload).
|
||||
// Initialize with zeroes, and then write the message type string starting at offset 1.
|
||||
// This means contents[0] and the unused positions in contents[1..13] remain 0x00.
|
||||
std::vector<uint8_t> contents(1 + CMessageHeader::COMMAND_SIZE + msg.data.size(), 0);
|
||||
std::copy(msg.m_type.begin(), msg.m_type.end(), contents.data() + 1);
|
||||
std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1 + CMessageHeader::COMMAND_SIZE);
|
||||
// Construct ciphertext in send buffer.
|
||||
m_send_buffer.resize(contents.size() + BIP324Cipher::EXPANSION);
|
||||
m_cipher.Encrypt(MakeByteSpan(contents), {}, false, MakeWritableByteSpan(m_send_buffer));
|
||||
m_send_type = msg.m_type;
|
||||
// Release memory
|
||||
msg.data = {};
|
||||
return true;
|
||||
}
|
||||
|
||||
Transport::BytesToSend V2Transport::GetBytesToSend(bool have_next_message) const noexcept
|
||||
{
|
||||
AssertLockNotHeld(m_send_mutex);
|
||||
LOCK(m_send_mutex);
|
||||
Assume(m_send_pos <= m_send_buffer.size());
|
||||
return {
|
||||
Span{m_send_buffer}.subspan(m_send_pos),
|
||||
// We only have more to send after the current m_send_buffer if there is a (next)
|
||||
// message to be sent, and we're capable of sending packets. */
|
||||
have_next_message && m_send_state == SendState::READY,
|
||||
m_send_type
|
||||
};
|
||||
}
|
||||
|
||||
void V2Transport::MarkBytesSent(size_t bytes_sent) noexcept
|
||||
{
|
||||
AssertLockNotHeld(m_send_mutex);
|
||||
LOCK(m_send_mutex);
|
||||
m_send_pos += bytes_sent;
|
||||
Assume(m_send_pos <= m_send_buffer.size());
|
||||
if (m_send_pos == m_send_buffer.size()) {
|
||||
m_send_pos = 0;
|
||||
m_send_buffer = {};
|
||||
}
|
||||
}
|
||||
|
||||
size_t V2Transport::GetSendMemoryUsage() const noexcept
|
||||
{
|
||||
AssertLockNotHeld(m_send_mutex);
|
||||
LOCK(m_send_mutex);
|
||||
return sizeof(m_send_buffer) + memusage::DynamicUsage(m_send_buffer);
|
||||
}
|
||||
|
||||
std::pair<size_t, bool> CConnman::SocketSendData(CNode& node) const
|
||||
{
|
||||
auto it = node.vSendMsg.begin();
|
||||
@ -923,7 +1344,8 @@ std::pair<size_t, bool> CConnman::SocketSendData(CNode& node) const
|
||||
while (true) {
|
||||
if (it != node.vSendMsg.end()) {
|
||||
// If possible, move one message from the send queue to the transport. This fails when
|
||||
// there is an existing message still being sent.
|
||||
// there is an existing message still being sent, or (for v2 transports) when the
|
||||
// handshake has not yet completed.
|
||||
size_t memusage = it->GetMemoryUsage();
|
||||
if (node.m_transport->SetMessageToSend(*it)) {
|
||||
// Update memory usage of send buffer (as *it will be deleted).
|
||||
@ -3031,7 +3453,8 @@ void CConnman::PushMessage(CNode* pnode, CSerializedNetMsg&& msg)
|
||||
// because the poll/select loop may pause for SELECT_TIMEOUT_MILLISECONDS before actually
|
||||
// doing a send, try sending from the calling thread if the queue was empty before.
|
||||
// With a V1Transport, more will always be true here, because adding a message always
|
||||
// results in sendable bytes there.
|
||||
// results in sendable bytes there, but with V2Transport this is not the case (it may
|
||||
// still be in the handshake).
|
||||
if (queue_was_empty && more) {
|
||||
std::tie(nBytesSent, std::ignore) = SocketSendData(*pnode);
|
||||
}
|
||||
|
181
src/net.h
181
src/net.h
@ -6,6 +6,7 @@
|
||||
#ifndef BITCOIN_NET_H
|
||||
#define BITCOIN_NET_H
|
||||
|
||||
#include <bip324.h>
|
||||
#include <chainparams.h>
|
||||
#include <common/bloom.h>
|
||||
#include <compat/compat.h>
|
||||
@ -298,7 +299,8 @@ public:
|
||||
* - Span<const uint8_t> to_send: span of bytes to be sent over the wire (possibly empty).
|
||||
* - bool more: whether there will be more bytes to be sent after the ones in to_send are
|
||||
* all sent (as signaled by MarkBytesSent()).
|
||||
* - const std::string& m_type: message type on behalf of which this is being sent.
|
||||
* - const std::string& m_type: message type on behalf of which this is being sent
|
||||
* ("" for bytes that are not on behalf of any message).
|
||||
*/
|
||||
using BytesToSend = std::tuple<
|
||||
Span<const uint8_t> /*to_send*/,
|
||||
@ -327,7 +329,9 @@ public:
|
||||
* happens when sending the payload of a message.
|
||||
* - Blocked: the transport itself has no more bytes to send, and is also incapable
|
||||
* of sending anything more at all now, if it were handed another
|
||||
* message to send.
|
||||
* message to send. This occurs in V2Transport before the handshake is
|
||||
* complete, as the encryption ciphers are not set up for sending
|
||||
* messages before that point.
|
||||
*
|
||||
* The boolean 'more' is true for Yes, false for Blocked, and have_next_message
|
||||
* controls what is returned for No.
|
||||
@ -432,6 +436,179 @@ public:
|
||||
size_t GetSendMemoryUsage() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
|
||||
};
|
||||
|
||||
class V2Transport final : public Transport
|
||||
{
|
||||
private:
|
||||
/** Contents of the version packet to send. BIP324 stipulates that senders should leave this
|
||||
* empty, and receivers should ignore it. Future extensions can change what is sent as long as
|
||||
* an empty version packet contents is interpreted as no extensions supported. */
|
||||
static constexpr std::array<std::byte, 0> VERSION_CONTENTS = {};
|
||||
|
||||
// The sender side and receiver side of V2Transport are state machines that are transitioned
|
||||
// through, based on what has been received. The receive state corresponds to the contents of,
|
||||
// and bytes received to, the receive buffer. The send state controls what can be appended to
|
||||
// the send buffer.
|
||||
|
||||
/** State type that defines the current contents of the receive buffer and/or how the next
|
||||
* received bytes added to it will be interpreted.
|
||||
*
|
||||
* Diagram:
|
||||
*
|
||||
* start /---------\
|
||||
* | | |
|
||||
* v v |
|
||||
* KEY -> GARB_GARBTERM -> GARBAUTH -> VERSION -> APP -> APP_READY
|
||||
*/
|
||||
enum class RecvState : uint8_t {
|
||||
/** Public key.
|
||||
*
|
||||
* This is the initial state, during which the other side's public key is
|
||||
* received. When that information arrives, the ciphers get initialized and the state
|
||||
* becomes GARB_GARBTERM. */
|
||||
KEY,
|
||||
|
||||
/** Garbage and garbage terminator.
|
||||
*
|
||||
* Whenever a byte is received, the last 16 bytes are compared with the expected garbage
|
||||
* terminator. When that happens, the state becomes GARBAUTH. If no matching terminator is
|
||||
* received in 4111 bytes (4095 for the maximum garbage length, and 16 bytes for the
|
||||
* terminator), the connection aborts. */
|
||||
GARB_GARBTERM,
|
||||
|
||||
/** Garbage authentication packet.
|
||||
*
|
||||
* A packet is received, and decrypted/verified with AAD set to the garbage received during
|
||||
* the GARB_GARBTERM state. If that succeeds, the state becomes VERSION. If it fails the
|
||||
* connection aborts. */
|
||||
GARBAUTH,
|
||||
|
||||
/** Version packet.
|
||||
*
|
||||
* A packet is received, and decrypted/verified. If that succeeds, the state becomes APP,
|
||||
* and the decrypted contents is interpreted as version negotiation (currently, that means
|
||||
* ignoring it, but it can be used for negotiating future extensions). If it fails, the
|
||||
* connection aborts. */
|
||||
VERSION,
|
||||
|
||||
/** Application packet.
|
||||
*
|
||||
* A packet is received, and decrypted/verified. If that succeeds, the state becomes
|
||||
* APP_READY and the decrypted contents is kept in m_recv_decode_buffer until it is
|
||||
* retrieved as a message by GetMessage(). */
|
||||
APP,
|
||||
|
||||
/** Nothing (an application packet is available for GetMessage()).
|
||||
*
|
||||
* Nothing can be received in this state. When the message is retrieved by GetMessage,
|
||||
* the state becomes APP again. */
|
||||
APP_READY,
|
||||
};
|
||||
|
||||
/** State type that controls the sender side.
|
||||
*
|
||||
* Diagram:
|
||||
*
|
||||
* start
|
||||
* |
|
||||
* v
|
||||
* AWAITING_KEY -> READY
|
||||
*/
|
||||
enum class SendState : uint8_t {
|
||||
/** Waiting for the other side's public key.
|
||||
*
|
||||
* This is the initial state. The public key is sent out. When the receiver receives the
|
||||
* other side's public key and transitions to GARB_GARBTERM, the sender state becomes
|
||||
* READY. */
|
||||
AWAITING_KEY,
|
||||
|
||||
/** Normal sending state.
|
||||
*
|
||||
* In this state, the ciphers are initialized, so packets can be sent. When this state is
|
||||
* entered, the garbage terminator, garbage authentication packet, and version packet are
|
||||
* appended to the send buffer (in addition to the key which may still be there). In this
|
||||
* state a message can be provided if the send buffer is empty. */
|
||||
READY,
|
||||
};
|
||||
|
||||
/** Cipher state. */
|
||||
BIP324Cipher m_cipher;
|
||||
/** Whether we are the initiator side. */
|
||||
const bool m_initiating;
|
||||
/** NodeId (for debug logging). */
|
||||
const NodeId m_nodeid;
|
||||
|
||||
/** Lock for receiver-side fields. */
|
||||
mutable Mutex m_recv_mutex ACQUIRED_BEFORE(m_send_mutex);
|
||||
/** In {GARBAUTH, VERSION, APP}, the decrypted packet length, if m_recv_buffer.size() >=
|
||||
* BIP324Cipher::LENGTH_LEN. Unspecified otherwise. */
|
||||
uint32_t m_recv_len GUARDED_BY(m_recv_mutex) {0};
|
||||
/** Receive buffer; meaning is determined by m_recv_state. */
|
||||
std::vector<uint8_t> m_recv_buffer GUARDED_BY(m_recv_mutex);
|
||||
/** During GARBAUTH, the garbage received during GARB_GARBTERM. */
|
||||
std::vector<uint8_t> m_recv_garbage GUARDED_BY(m_recv_mutex);
|
||||
/** Buffer to put decrypted contents in, for converting to CNetMessage. */
|
||||
std::vector<uint8_t> m_recv_decode_buffer GUARDED_BY(m_recv_mutex);
|
||||
/** Deserialization type. */
|
||||
const int m_recv_type;
|
||||
/** Deserialization version number. */
|
||||
const int m_recv_version;
|
||||
/** Current receiver state. */
|
||||
RecvState m_recv_state GUARDED_BY(m_recv_mutex);
|
||||
|
||||
/** Lock for sending-side fields. If both sending and receiving fields are accessed,
|
||||
* m_recv_mutex must be acquired before m_send_mutex. */
|
||||
mutable Mutex m_send_mutex ACQUIRED_AFTER(m_recv_mutex);
|
||||
/** The send buffer; meaning is determined by m_send_state. */
|
||||
std::vector<uint8_t> m_send_buffer GUARDED_BY(m_send_mutex);
|
||||
/** How many bytes from the send buffer have been sent so far. */
|
||||
uint32_t m_send_pos GUARDED_BY(m_send_mutex) {0};
|
||||
/** Type of the message being sent. */
|
||||
std::string m_send_type GUARDED_BY(m_send_mutex);
|
||||
/** Current sender state. */
|
||||
SendState m_send_state GUARDED_BY(m_send_mutex);
|
||||
|
||||
/** Change the receive state. */
|
||||
void SetReceiveState(RecvState recv_state) noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex);
|
||||
/** Change the send state. */
|
||||
void SetSendState(SendState send_state) noexcept EXCLUSIVE_LOCKS_REQUIRED(m_send_mutex);
|
||||
/** Given a packet's contents, find the message type (if valid), and strip it from contents. */
|
||||
static std::optional<std::string> GetMessageType(Span<const uint8_t>& contents) noexcept;
|
||||
/** Determine how many received bytes can be processed in one go (not allowed in V1 state). */
|
||||
size_t GetMaxBytesToProcess() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex);
|
||||
/** Process bytes in m_recv_buffer, while in KEY state. */
|
||||
void ProcessReceivedKeyBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex, !m_send_mutex);
|
||||
/** Process bytes in m_recv_buffer, while in GARB_GARBTERM state. */
|
||||
bool ProcessReceivedGarbageBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex);
|
||||
/** Process bytes in m_recv_buffer, while in GARBAUTH/VERSION/APP state. */
|
||||
bool ProcessReceivedPacketBytes() noexcept EXCLUSIVE_LOCKS_REQUIRED(m_recv_mutex);
|
||||
|
||||
public:
|
||||
static constexpr uint32_t MAX_GARBAGE_LEN = 4095;
|
||||
|
||||
/** Construct a V2 transport with securely generated random keys.
|
||||
*
|
||||
* @param[in] nodeid the node's NodeId (only for debug log output).
|
||||
* @param[in] initiating whether we are the initiator side.
|
||||
* @param[in] type_in the serialization type of returned CNetMessages.
|
||||
* @param[in] version_in the serialization version of returned CNetMessages.
|
||||
*/
|
||||
V2Transport(NodeId nodeid, bool initiating, int type_in, int version_in) noexcept;
|
||||
|
||||
/** Construct a V2 transport with specified keys (test use only). */
|
||||
V2Transport(NodeId nodeid, bool initiating, int type_in, int version_in, const CKey& key, Span<const std::byte> ent32) noexcept;
|
||||
|
||||
// Receive side functions.
|
||||
bool ReceivedMessageComplete() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex);
|
||||
bool ReceivedBytes(Span<const uint8_t>& msg_bytes) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex, !m_send_mutex);
|
||||
CNetMessage GetReceivedMessage(std::chrono::microseconds time, bool& reject_message) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_recv_mutex);
|
||||
|
||||
// Send side functions.
|
||||
bool SetMessageToSend(CSerializedNetMsg& msg) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
|
||||
BytesToSend GetBytesToSend(bool have_next_message) const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
|
||||
void MarkBytesSent(size_t bytes_sent) noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
|
||||
size_t GetSendMemoryUsage() const noexcept override EXCLUSIVE_LOCKS_REQUIRED(!m_send_mutex);
|
||||
};
|
||||
|
||||
struct CNodeOptions
|
||||
{
|
||||
NetPermissionFlags permission_flags = NetPermissionFlags::None;
|
||||
|
@ -25,6 +25,7 @@ std::vector<std::string> g_all_messages;
|
||||
|
||||
void initialize_p2p_transport_serialization()
|
||||
{
|
||||
ECC_Start();
|
||||
SelectParams(ChainType::REGTEST);
|
||||
g_all_messages = getAllNetMessageTypes();
|
||||
std::sort(g_all_messages.begin(), g_all_messages.end());
|
||||
@ -334,6 +335,19 @@ std::unique_ptr<Transport> MakeV1Transport(NodeId nodeid) noexcept
|
||||
return std::make_unique<V1Transport>(nodeid, SER_NETWORK, INIT_PROTO_VERSION);
|
||||
}
|
||||
|
||||
template<typename RNG>
|
||||
std::unique_ptr<Transport> MakeV2Transport(NodeId nodeid, bool initiator, RNG& rng, FuzzedDataProvider& provider)
|
||||
{
|
||||
// Retrieve key
|
||||
auto key = ConsumePrivateKey(provider);
|
||||
if (!key.IsValid()) return {};
|
||||
// Retrieve entropy
|
||||
auto ent = provider.ConsumeBytes<std::byte>(32);
|
||||
ent.resize(32);
|
||||
|
||||
return std::make_unique<V2Transport>(nodeid, initiator, SER_NETWORK, INIT_PROTO_VERSION, key, ent);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
FUZZ_TARGET(p2p_transport_bidirectional, .init = initialize_p2p_transport_serialization)
|
||||
@ -346,3 +360,14 @@ FUZZ_TARGET(p2p_transport_bidirectional, .init = initialize_p2p_transport_serial
|
||||
if (!t1 || !t2) return;
|
||||
SimulationTest(*t1, *t2, rng, provider);
|
||||
}
|
||||
|
||||
FUZZ_TARGET(p2p_transport_bidirectional_v2, .init = initialize_p2p_transport_serialization)
|
||||
{
|
||||
// Test with two V2 transports talking to each other.
|
||||
FuzzedDataProvider provider{buffer.data(), buffer.size()};
|
||||
XoRoShiRo128PlusPlus rng(provider.ConsumeIntegral<uint64_t>());
|
||||
auto t1 = MakeV2Transport(NodeId{0}, true, rng, provider);
|
||||
auto t2 = MakeV2Transport(NodeId{1}, false, rng, provider);
|
||||
if (!t1 || !t2) return;
|
||||
SimulationTest(*t1, *t2, rng, provider);
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user