Move Taproot{SpendData/Builder} to signingprovider.{h/cpp}

TaprootSpendData and TaprootBuilder are used in signing in
SigningProvider contexts, so they should live near that.
This commit is contained in:
Andrew Chow
2023-08-08 10:45:06 -04:00
parent 86ea8bed54
commit 145f36ec81
8 changed files with 431 additions and 427 deletions

View File

@@ -5,6 +5,7 @@
#include <psbt.h>
#include <policy/policy.h>
#include <script/signingprovider.h>
#include <util/check.h>
#include <util/strencodings.h>

View File

@@ -9,6 +9,7 @@
#include <pubkey.h>
#include <script/miniscript.h>
#include <script/script.h>
#include <script/signingprovider.h>
#include <script/standard.h>
#include <uint256.h>

View File

@@ -13,6 +13,7 @@
#include <script/interpreter.h>
#include <script/keyorigin.h>
#include <script/standard.h>
#include <script/signingprovider.h>
#include <uint256.h>
class CKey;

View File

@@ -4,6 +4,7 @@
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <script/keyorigin.h>
#include <script/interpreter.h>
#include <script/signingprovider.h>
#include <script/standard.h>
@@ -225,3 +226,297 @@ CKeyID GetKeyForDestination(const SigningProvider& store, const CTxDestination&
}
return CKeyID();
}
/*static*/ TaprootBuilder::NodeInfo TaprootBuilder::Combine(NodeInfo&& a, NodeInfo&& b)
{
NodeInfo ret;
/* Iterate over all tracked leaves in a, add b's hash to their Merkle branch, and move them to ret. */
for (auto& leaf : a.leaves) {
leaf.merkle_branch.push_back(b.hash);
ret.leaves.emplace_back(std::move(leaf));
}
/* Iterate over all tracked leaves in b, add a's hash to their Merkle branch, and move them to ret. */
for (auto& leaf : b.leaves) {
leaf.merkle_branch.push_back(a.hash);
ret.leaves.emplace_back(std::move(leaf));
}
ret.hash = ComputeTapbranchHash(a.hash, b.hash);
return ret;
}
void TaprootSpendData::Merge(TaprootSpendData other)
{
// TODO: figure out how to better deal with conflicting information
// being merged.
if (internal_key.IsNull() && !other.internal_key.IsNull()) {
internal_key = other.internal_key;
}
if (merkle_root.IsNull() && !other.merkle_root.IsNull()) {
merkle_root = other.merkle_root;
}
for (auto& [key, control_blocks] : other.scripts) {
scripts[key].merge(std::move(control_blocks));
}
}
void TaprootBuilder::Insert(TaprootBuilder::NodeInfo&& node, int depth)
{
assert(depth >= 0 && (size_t)depth <= TAPROOT_CONTROL_MAX_NODE_COUNT);
/* We cannot insert a leaf at a lower depth while a deeper branch is unfinished. Doing
* so would mean the Add() invocations do not correspond to a DFS traversal of a
* binary tree. */
if ((size_t)depth + 1 < m_branch.size()) {
m_valid = false;
return;
}
/* As long as an entry in the branch exists at the specified depth, combine it and propagate up.
* The 'node' variable is overwritten here with the newly combined node. */
while (m_valid && m_branch.size() > (size_t)depth && m_branch[depth].has_value()) {
node = Combine(std::move(node), std::move(*m_branch[depth]));
m_branch.pop_back();
if (depth == 0) m_valid = false; /* Can't propagate further up than the root */
--depth;
}
if (m_valid) {
/* Make sure the branch is big enough to place the new node. */
if (m_branch.size() <= (size_t)depth) m_branch.resize((size_t)depth + 1);
assert(!m_branch[depth].has_value());
m_branch[depth] = std::move(node);
}
}
/*static*/ bool TaprootBuilder::ValidDepths(const std::vector<int>& depths)
{
std::vector<bool> branch;
for (int depth : depths) {
// This inner loop corresponds to effectively the same logic on branch
// as what Insert() performs on the m_branch variable. Instead of
// storing a NodeInfo object, just remember whether or not there is one
// at that depth.
if (depth < 0 || (size_t)depth > TAPROOT_CONTROL_MAX_NODE_COUNT) return false;
if ((size_t)depth + 1 < branch.size()) return false;
while (branch.size() > (size_t)depth && branch[depth]) {
branch.pop_back();
if (depth == 0) return false;
--depth;
}
if (branch.size() <= (size_t)depth) branch.resize((size_t)depth + 1);
assert(!branch[depth]);
branch[depth] = true;
}
// And this check corresponds to the IsComplete() check on m_branch.
return branch.size() == 0 || (branch.size() == 1 && branch[0]);
}
TaprootBuilder& TaprootBuilder::Add(int depth, Span<const unsigned char> script, int leaf_version, bool track)
{
assert((leaf_version & ~TAPROOT_LEAF_MASK) == 0);
if (!IsValid()) return *this;
/* Construct NodeInfo object with leaf hash and (if track is true) also leaf information. */
NodeInfo node;
node.hash = ComputeTapleafHash(leaf_version, script);
if (track) node.leaves.emplace_back(LeafInfo{std::vector<unsigned char>(script.begin(), script.end()), leaf_version, {}});
/* Insert into the branch. */
Insert(std::move(node), depth);
return *this;
}
TaprootBuilder& TaprootBuilder::AddOmitted(int depth, const uint256& hash)
{
if (!IsValid()) return *this;
/* Construct NodeInfo object with the hash directly, and insert it into the branch. */
NodeInfo node;
node.hash = hash;
Insert(std::move(node), depth);
return *this;
}
TaprootBuilder& TaprootBuilder::Finalize(const XOnlyPubKey& internal_key)
{
/* Can only call this function when IsComplete() is true. */
assert(IsComplete());
m_internal_key = internal_key;
auto ret = m_internal_key.CreateTapTweak(m_branch.size() == 0 ? nullptr : &m_branch[0]->hash);
assert(ret.has_value());
std::tie(m_output_key, m_parity) = *ret;
return *this;
}
WitnessV1Taproot TaprootBuilder::GetOutput() { return WitnessV1Taproot{m_output_key}; }
TaprootSpendData TaprootBuilder::GetSpendData() const
{
assert(IsComplete());
assert(m_output_key.IsFullyValid());
TaprootSpendData spd;
spd.merkle_root = m_branch.size() == 0 ? uint256() : m_branch[0]->hash;
spd.internal_key = m_internal_key;
if (m_branch.size()) {
// If any script paths exist, they have been combined into the root m_branch[0]
// by now. Compute the control block for each of its tracked leaves, and put them in
// spd.scripts.
for (const auto& leaf : m_branch[0]->leaves) {
std::vector<unsigned char> control_block;
control_block.resize(TAPROOT_CONTROL_BASE_SIZE + TAPROOT_CONTROL_NODE_SIZE * leaf.merkle_branch.size());
control_block[0] = leaf.leaf_version | (m_parity ? 1 : 0);
std::copy(m_internal_key.begin(), m_internal_key.end(), control_block.begin() + 1);
if (leaf.merkle_branch.size()) {
std::copy(leaf.merkle_branch[0].begin(),
leaf.merkle_branch[0].begin() + TAPROOT_CONTROL_NODE_SIZE * leaf.merkle_branch.size(),
control_block.begin() + TAPROOT_CONTROL_BASE_SIZE);
}
spd.scripts[{leaf.script, leaf.leaf_version}].insert(std::move(control_block));
}
}
return spd;
}
std::optional<std::vector<std::tuple<int, std::vector<unsigned char>, int>>> InferTaprootTree(const TaprootSpendData& spenddata, const XOnlyPubKey& output)
{
// Verify that the output matches the assumed Merkle root and internal key.
auto tweak = spenddata.internal_key.CreateTapTweak(spenddata.merkle_root.IsNull() ? nullptr : &spenddata.merkle_root);
if (!tweak || tweak->first != output) return std::nullopt;
// If the Merkle root is 0, the tree is empty, and we're done.
std::vector<std::tuple<int, std::vector<unsigned char>, int>> ret;
if (spenddata.merkle_root.IsNull()) return ret;
/** Data structure to represent the nodes of the tree we're going to build. */
struct TreeNode {
/** Hash of this node, if known; 0 otherwise. */
uint256 hash;
/** The left and right subtrees (note that their order is irrelevant). */
std::unique_ptr<TreeNode> sub[2];
/** If this is known to be a leaf node, a pointer to the (script, leaf_ver) pair.
* nullptr otherwise. */
const std::pair<std::vector<unsigned char>, int>* leaf = nullptr;
/** Whether or not this node has been explored (is known to be a leaf, or known to have children). */
bool explored = false;
/** Whether or not this node is an inner node (unknown until explored = true). */
bool inner;
/** Whether or not we have produced output for this subtree. */
bool done = false;
};
// Build tree from the provided branches.
TreeNode root;
root.hash = spenddata.merkle_root;
for (const auto& [key, control_blocks] : spenddata.scripts) {
const auto& [script, leaf_ver] = key;
for (const auto& control : control_blocks) {
// Skip script records with nonsensical leaf version.
if (leaf_ver < 0 || leaf_ver >= 0x100 || leaf_ver & 1) continue;
// Skip script records with invalid control block sizes.
if (control.size() < TAPROOT_CONTROL_BASE_SIZE || control.size() > TAPROOT_CONTROL_MAX_SIZE ||
((control.size() - TAPROOT_CONTROL_BASE_SIZE) % TAPROOT_CONTROL_NODE_SIZE) != 0) continue;
// Skip script records that don't match the control block.
if ((control[0] & TAPROOT_LEAF_MASK) != leaf_ver) continue;
// Skip script records that don't match the provided Merkle root.
const uint256 leaf_hash = ComputeTapleafHash(leaf_ver, script);
const uint256 merkle_root = ComputeTaprootMerkleRoot(control, leaf_hash);
if (merkle_root != spenddata.merkle_root) continue;
TreeNode* node = &root;
size_t levels = (control.size() - TAPROOT_CONTROL_BASE_SIZE) / TAPROOT_CONTROL_NODE_SIZE;
for (size_t depth = 0; depth < levels; ++depth) {
// Can't descend into a node which we already know is a leaf.
if (node->explored && !node->inner) return std::nullopt;
// Extract partner hash from Merkle branch in control block.
uint256 hash;
std::copy(control.begin() + TAPROOT_CONTROL_BASE_SIZE + (levels - 1 - depth) * TAPROOT_CONTROL_NODE_SIZE,
control.begin() + TAPROOT_CONTROL_BASE_SIZE + (levels - depth) * TAPROOT_CONTROL_NODE_SIZE,
hash.begin());
if (node->sub[0]) {
// Descend into the existing left or right branch.
bool desc = false;
for (int i = 0; i < 2; ++i) {
if (node->sub[i]->hash == hash || (node->sub[i]->hash.IsNull() && node->sub[1-i]->hash != hash)) {
node->sub[i]->hash = hash;
node = &*node->sub[1-i];
desc = true;
break;
}
}
if (!desc) return std::nullopt; // This probably requires a hash collision to hit.
} else {
// We're in an unexplored node. Create subtrees and descend.
node->explored = true;
node->inner = true;
node->sub[0] = std::make_unique<TreeNode>();
node->sub[1] = std::make_unique<TreeNode>();
node->sub[1]->hash = hash;
node = &*node->sub[0];
}
}
// Cannot turn a known inner node into a leaf.
if (node->sub[0]) return std::nullopt;
node->explored = true;
node->inner = false;
node->leaf = &key;
node->hash = leaf_hash;
}
}
// Recursive processing to turn the tree into flattened output. Use an explicit stack here to avoid
// overflowing the call stack (the tree may be 128 levels deep).
std::vector<TreeNode*> stack{&root};
while (!stack.empty()) {
TreeNode& node = *stack.back();
if (!node.explored) {
// Unexplored node, which means the tree is incomplete.
return std::nullopt;
} else if (!node.inner) {
// Leaf node; produce output.
ret.emplace_back(stack.size() - 1, node.leaf->first, node.leaf->second);
node.done = true;
stack.pop_back();
} else if (node.sub[0]->done && !node.sub[1]->done && !node.sub[1]->explored && !node.sub[1]->hash.IsNull() &&
ComputeTapbranchHash(node.sub[1]->hash, node.sub[1]->hash) == node.hash) {
// Whenever there are nodes with two identical subtrees under it, we run into a problem:
// the control blocks for the leaves underneath those will be identical as well, and thus
// they will all be matched to the same path in the tree. The result is that at the location
// where the duplicate occurred, the left child will contain a normal tree that can be explored
// and processed, but the right one will remain unexplored.
//
// This situation can be detected, by encountering an inner node with unexplored right subtree
// with known hash, and H_TapBranch(hash, hash) is equal to the parent node (this node)'s hash.
//
// To deal with this, simply process the left tree a second time (set its done flag to false;
// noting that the done flag of its children have already been set to false after processing
// those). To avoid ending up in an infinite loop, set the done flag of the right (unexplored)
// subtree to true.
node.sub[0]->done = false;
node.sub[1]->done = true;
} else if (node.sub[0]->done && node.sub[1]->done) {
// An internal node which we're finished with.
node.sub[0]->done = false;
node.sub[1]->done = false;
node.done = true;
stack.pop_back();
} else if (!node.sub[0]->done) {
// An internal node whose left branch hasn't been processed yet. Do so first.
stack.push_back(&*node.sub[0]);
} else if (!node.sub[1]->done) {
// An internal node whose right branch hasn't been processed yet. Do so first.
stack.push_back(&*node.sub[1]);
}
}
return ret;
}
std::vector<std::tuple<uint8_t, uint8_t, std::vector<unsigned char>>> TaprootBuilder::GetTreeTuples() const
{
assert(IsComplete());
std::vector<std::tuple<uint8_t, uint8_t, std::vector<unsigned char>>> tuples;
if (m_branch.size()) {
const auto& leaves = m_branch[0]->leaves;
for (const auto& leaf : leaves) {
assert(leaf.merkle_branch.size() <= TAPROOT_CONTROL_MAX_NODE_COUNT);
uint8_t depth = (uint8_t)leaf.merkle_branch.size();
uint8_t leaf_ver = (uint8_t)leaf.leaf_version;
tuples.push_back(std::make_tuple(depth, leaf_ver, leaf.script));
}
}
return tuples;
}

View File

@@ -14,6 +14,138 @@
#include <script/standard.h>
#include <sync.h>
struct ShortestVectorFirstComparator
{
bool operator()(const std::vector<unsigned char>& a, const std::vector<unsigned char>& b) const
{
if (a.size() < b.size()) return true;
if (a.size() > b.size()) return false;
return a < b;
}
};
struct TaprootSpendData
{
/** The BIP341 internal key. */
XOnlyPubKey internal_key;
/** The Merkle root of the script tree (0 if no scripts). */
uint256 merkle_root;
/** Map from (script, leaf_version) to (sets of) control blocks.
* More than one control block for a given script is only possible if it
* appears in multiple branches of the tree. We keep them all so that
* inference can reconstruct the full tree. Within each set, the control
* blocks are sorted by size, so that the signing logic can easily
* prefer the cheapest one. */
std::map<std::pair<std::vector<unsigned char>, int>, std::set<std::vector<unsigned char>, ShortestVectorFirstComparator>> scripts;
/** Merge other TaprootSpendData (for the same scriptPubKey) into this. */
void Merge(TaprootSpendData other);
};
/** Utility class to construct Taproot outputs from internal key and script tree. */
class TaprootBuilder
{
private:
/** Information about a tracked leaf in the Merkle tree. */
struct LeafInfo
{
std::vector<unsigned char> script; //!< The script.
int leaf_version; //!< The leaf version for that script.
std::vector<uint256> merkle_branch; //!< The hashing partners above this leaf.
};
/** Information associated with a node in the Merkle tree. */
struct NodeInfo
{
/** Merkle hash of this node. */
uint256 hash;
/** Tracked leaves underneath this node (either from the node itself, or its children).
* The merkle_branch field of each is the partners to get to *this* node. */
std::vector<LeafInfo> leaves;
};
/** Whether the builder is in a valid state so far. */
bool m_valid = true;
/** The current state of the builder.
*
* For each level in the tree, one NodeInfo object may be present. m_branch[0]
* is information about the root; further values are for deeper subtrees being
* explored.
*
* For every right branch taken to reach the position we're currently
* working in, there will be a (non-nullopt) entry in m_branch corresponding
* to the left branch at that level.
*
* For example, imagine this tree: - N0 -
* / \
* N1 N2
* / \ / \
* A B C N3
* / \
* D E
*
* Initially, m_branch is empty. After processing leaf A, it would become
* {nullopt, nullopt, A}. When processing leaf B, an entry at level 2 already
* exists, and it would thus be combined with it to produce a level 1 one,
* resulting in {nullopt, N1}. Adding C and D takes us to {nullopt, N1, C}
* and {nullopt, N1, C, D} respectively. When E is processed, it is combined
* with D, and then C, and then N1, to produce the root, resulting in {N0}.
*
* This structure allows processing with just O(log n) overhead if the leaves
* are computed on the fly.
*
* As an invariant, there can never be nullopt entries at the end. There can
* also not be more than 128 entries (as that would mean more than 128 levels
* in the tree). The depth of newly added entries will always be at least
* equal to the current size of m_branch (otherwise it does not correspond
* to a depth-first traversal of a tree). m_branch is only empty if no entries
* have ever be processed. m_branch having length 1 corresponds to being done.
*/
std::vector<std::optional<NodeInfo>> m_branch;
XOnlyPubKey m_internal_key; //!< The internal key, set when finalizing.
XOnlyPubKey m_output_key; //!< The output key, computed when finalizing.
bool m_parity; //!< The tweak parity, computed when finalizing.
/** Combine information about a parent Merkle tree node from its child nodes. */
static NodeInfo Combine(NodeInfo&& a, NodeInfo&& b);
/** Insert information about a node at a certain depth, and propagate information up. */
void Insert(NodeInfo&& node, int depth);
public:
/** Add a new script at a certain depth in the tree. Add() operations must be called
* in depth-first traversal order of binary tree. If track is true, it will be included in
* the GetSpendData() output. */
TaprootBuilder& Add(int depth, Span<const unsigned char> script, int leaf_version, bool track = true);
/** Like Add(), but for a Merkle node with a given hash to the tree. */
TaprootBuilder& AddOmitted(int depth, const uint256& hash);
/** Finalize the construction. Can only be called when IsComplete() is true.
internal_key.IsFullyValid() must be true. */
TaprootBuilder& Finalize(const XOnlyPubKey& internal_key);
/** Return true if so far all input was valid. */
bool IsValid() const { return m_valid; }
/** Return whether there were either no leaves, or the leaves form a Huffman tree. */
bool IsComplete() const { return m_valid && (m_branch.size() == 0 || (m_branch.size() == 1 && m_branch[0].has_value())); }
/** Compute scriptPubKey (after Finalize()). */
WitnessV1Taproot GetOutput();
/** Check if a list of depths is legal (will lead to IsComplete()). */
static bool ValidDepths(const std::vector<int>& depths);
/** Compute spending data (after Finalize()). */
TaprootSpendData GetSpendData() const;
/** Returns a vector of tuples representing the depth, leaf version, and script */
std::vector<std::tuple<uint8_t, uint8_t, std::vector<unsigned char>>> GetTreeTuples() const;
/** Returns true if there are any tapscripts */
bool HasScripts() const { return !m_branch.empty(); }
};
/** Given a TaprootSpendData and the output key, reconstruct its script tree.
*
* If the output doesn't match the spenddata, or if the data in spenddata is incomplete,
* std::nullopt is returned. Otherwise, a vector of (depth, script, leaf_ver) tuples is
* returned, corresponding to a depth-first traversal of the script tree.
*/
std::optional<std::vector<std::tuple<int, std::vector<unsigned char>, int>>> InferTaprootTree(const TaprootSpendData& spenddata, const XOnlyPubKey& output);
/** An interface to be implemented by keystores that support signing. */
class SigningProvider
{

View File

@@ -358,298 +358,3 @@ CScript GetScriptForMultisig(int nRequired, const std::vector<CPubKey>& keys)
bool IsValidDestination(const CTxDestination& dest) {
return dest.index() != 0;
}
/*static*/ TaprootBuilder::NodeInfo TaprootBuilder::Combine(NodeInfo&& a, NodeInfo&& b)
{
NodeInfo ret;
/* Iterate over all tracked leaves in a, add b's hash to their Merkle branch, and move them to ret. */
for (auto& leaf : a.leaves) {
leaf.merkle_branch.push_back(b.hash);
ret.leaves.emplace_back(std::move(leaf));
}
/* Iterate over all tracked leaves in b, add a's hash to their Merkle branch, and move them to ret. */
for (auto& leaf : b.leaves) {
leaf.merkle_branch.push_back(a.hash);
ret.leaves.emplace_back(std::move(leaf));
}
ret.hash = ComputeTapbranchHash(a.hash, b.hash);
return ret;
}
void TaprootSpendData::Merge(TaprootSpendData other)
{
// TODO: figure out how to better deal with conflicting information
// being merged.
if (internal_key.IsNull() && !other.internal_key.IsNull()) {
internal_key = other.internal_key;
}
if (merkle_root.IsNull() && !other.merkle_root.IsNull()) {
merkle_root = other.merkle_root;
}
for (auto& [key, control_blocks] : other.scripts) {
scripts[key].merge(std::move(control_blocks));
}
}
void TaprootBuilder::Insert(TaprootBuilder::NodeInfo&& node, int depth)
{
assert(depth >= 0 && (size_t)depth <= TAPROOT_CONTROL_MAX_NODE_COUNT);
/* We cannot insert a leaf at a lower depth while a deeper branch is unfinished. Doing
* so would mean the Add() invocations do not correspond to a DFS traversal of a
* binary tree. */
if ((size_t)depth + 1 < m_branch.size()) {
m_valid = false;
return;
}
/* As long as an entry in the branch exists at the specified depth, combine it and propagate up.
* The 'node' variable is overwritten here with the newly combined node. */
while (m_valid && m_branch.size() > (size_t)depth && m_branch[depth].has_value()) {
node = Combine(std::move(node), std::move(*m_branch[depth]));
m_branch.pop_back();
if (depth == 0) m_valid = false; /* Can't propagate further up than the root */
--depth;
}
if (m_valid) {
/* Make sure the branch is big enough to place the new node. */
if (m_branch.size() <= (size_t)depth) m_branch.resize((size_t)depth + 1);
assert(!m_branch[depth].has_value());
m_branch[depth] = std::move(node);
}
}
/*static*/ bool TaprootBuilder::ValidDepths(const std::vector<int>& depths)
{
std::vector<bool> branch;
for (int depth : depths) {
// This inner loop corresponds to effectively the same logic on branch
// as what Insert() performs on the m_branch variable. Instead of
// storing a NodeInfo object, just remember whether or not there is one
// at that depth.
if (depth < 0 || (size_t)depth > TAPROOT_CONTROL_MAX_NODE_COUNT) return false;
if ((size_t)depth + 1 < branch.size()) return false;
while (branch.size() > (size_t)depth && branch[depth]) {
branch.pop_back();
if (depth == 0) return false;
--depth;
}
if (branch.size() <= (size_t)depth) branch.resize((size_t)depth + 1);
assert(!branch[depth]);
branch[depth] = true;
}
// And this check corresponds to the IsComplete() check on m_branch.
return branch.size() == 0 || (branch.size() == 1 && branch[0]);
}
TaprootBuilder& TaprootBuilder::Add(int depth, Span<const unsigned char> script, int leaf_version, bool track)
{
assert((leaf_version & ~TAPROOT_LEAF_MASK) == 0);
if (!IsValid()) return *this;
/* Construct NodeInfo object with leaf hash and (if track is true) also leaf information. */
NodeInfo node;
node.hash = ComputeTapleafHash(leaf_version, script);
if (track) node.leaves.emplace_back(LeafInfo{std::vector<unsigned char>(script.begin(), script.end()), leaf_version, {}});
/* Insert into the branch. */
Insert(std::move(node), depth);
return *this;
}
TaprootBuilder& TaprootBuilder::AddOmitted(int depth, const uint256& hash)
{
if (!IsValid()) return *this;
/* Construct NodeInfo object with the hash directly, and insert it into the branch. */
NodeInfo node;
node.hash = hash;
Insert(std::move(node), depth);
return *this;
}
TaprootBuilder& TaprootBuilder::Finalize(const XOnlyPubKey& internal_key)
{
/* Can only call this function when IsComplete() is true. */
assert(IsComplete());
m_internal_key = internal_key;
auto ret = m_internal_key.CreateTapTweak(m_branch.size() == 0 ? nullptr : &m_branch[0]->hash);
assert(ret.has_value());
std::tie(m_output_key, m_parity) = *ret;
return *this;
}
WitnessV1Taproot TaprootBuilder::GetOutput() { return WitnessV1Taproot{m_output_key}; }
TaprootSpendData TaprootBuilder::GetSpendData() const
{
assert(IsComplete());
assert(m_output_key.IsFullyValid());
TaprootSpendData spd;
spd.merkle_root = m_branch.size() == 0 ? uint256() : m_branch[0]->hash;
spd.internal_key = m_internal_key;
if (m_branch.size()) {
// If any script paths exist, they have been combined into the root m_branch[0]
// by now. Compute the control block for each of its tracked leaves, and put them in
// spd.scripts.
for (const auto& leaf : m_branch[0]->leaves) {
std::vector<unsigned char> control_block;
control_block.resize(TAPROOT_CONTROL_BASE_SIZE + TAPROOT_CONTROL_NODE_SIZE * leaf.merkle_branch.size());
control_block[0] = leaf.leaf_version | (m_parity ? 1 : 0);
std::copy(m_internal_key.begin(), m_internal_key.end(), control_block.begin() + 1);
if (leaf.merkle_branch.size()) {
std::copy(leaf.merkle_branch[0].begin(),
leaf.merkle_branch[0].begin() + TAPROOT_CONTROL_NODE_SIZE * leaf.merkle_branch.size(),
control_block.begin() + TAPROOT_CONTROL_BASE_SIZE);
}
spd.scripts[{leaf.script, leaf.leaf_version}].insert(std::move(control_block));
}
}
return spd;
}
std::optional<std::vector<std::tuple<int, std::vector<unsigned char>, int>>> InferTaprootTree(const TaprootSpendData& spenddata, const XOnlyPubKey& output)
{
// Verify that the output matches the assumed Merkle root and internal key.
auto tweak = spenddata.internal_key.CreateTapTweak(spenddata.merkle_root.IsNull() ? nullptr : &spenddata.merkle_root);
if (!tweak || tweak->first != output) return std::nullopt;
// If the Merkle root is 0, the tree is empty, and we're done.
std::vector<std::tuple<int, std::vector<unsigned char>, int>> ret;
if (spenddata.merkle_root.IsNull()) return ret;
/** Data structure to represent the nodes of the tree we're going to build. */
struct TreeNode {
/** Hash of this node, if known; 0 otherwise. */
uint256 hash;
/** The left and right subtrees (note that their order is irrelevant). */
std::unique_ptr<TreeNode> sub[2];
/** If this is known to be a leaf node, a pointer to the (script, leaf_ver) pair.
* nullptr otherwise. */
const std::pair<std::vector<unsigned char>, int>* leaf = nullptr;
/** Whether or not this node has been explored (is known to be a leaf, or known to have children). */
bool explored = false;
/** Whether or not this node is an inner node (unknown until explored = true). */
bool inner;
/** Whether or not we have produced output for this subtree. */
bool done = false;
};
// Build tree from the provided branches.
TreeNode root;
root.hash = spenddata.merkle_root;
for (const auto& [key, control_blocks] : spenddata.scripts) {
const auto& [script, leaf_ver] = key;
for (const auto& control : control_blocks) {
// Skip script records with nonsensical leaf version.
if (leaf_ver < 0 || leaf_ver >= 0x100 || leaf_ver & 1) continue;
// Skip script records with invalid control block sizes.
if (control.size() < TAPROOT_CONTROL_BASE_SIZE || control.size() > TAPROOT_CONTROL_MAX_SIZE ||
((control.size() - TAPROOT_CONTROL_BASE_SIZE) % TAPROOT_CONTROL_NODE_SIZE) != 0) continue;
// Skip script records that don't match the control block.
if ((control[0] & TAPROOT_LEAF_MASK) != leaf_ver) continue;
// Skip script records that don't match the provided Merkle root.
const uint256 leaf_hash = ComputeTapleafHash(leaf_ver, script);
const uint256 merkle_root = ComputeTaprootMerkleRoot(control, leaf_hash);
if (merkle_root != spenddata.merkle_root) continue;
TreeNode* node = &root;
size_t levels = (control.size() - TAPROOT_CONTROL_BASE_SIZE) / TAPROOT_CONTROL_NODE_SIZE;
for (size_t depth = 0; depth < levels; ++depth) {
// Can't descend into a node which we already know is a leaf.
if (node->explored && !node->inner) return std::nullopt;
// Extract partner hash from Merkle branch in control block.
uint256 hash;
std::copy(control.begin() + TAPROOT_CONTROL_BASE_SIZE + (levels - 1 - depth) * TAPROOT_CONTROL_NODE_SIZE,
control.begin() + TAPROOT_CONTROL_BASE_SIZE + (levels - depth) * TAPROOT_CONTROL_NODE_SIZE,
hash.begin());
if (node->sub[0]) {
// Descend into the existing left or right branch.
bool desc = false;
for (int i = 0; i < 2; ++i) {
if (node->sub[i]->hash == hash || (node->sub[i]->hash.IsNull() && node->sub[1-i]->hash != hash)) {
node->sub[i]->hash = hash;
node = &*node->sub[1-i];
desc = true;
break;
}
}
if (!desc) return std::nullopt; // This probably requires a hash collision to hit.
} else {
// We're in an unexplored node. Create subtrees and descend.
node->explored = true;
node->inner = true;
node->sub[0] = std::make_unique<TreeNode>();
node->sub[1] = std::make_unique<TreeNode>();
node->sub[1]->hash = hash;
node = &*node->sub[0];
}
}
// Cannot turn a known inner node into a leaf.
if (node->sub[0]) return std::nullopt;
node->explored = true;
node->inner = false;
node->leaf = &key;
node->hash = leaf_hash;
}
}
// Recursive processing to turn the tree into flattened output. Use an explicit stack here to avoid
// overflowing the call stack (the tree may be 128 levels deep).
std::vector<TreeNode*> stack{&root};
while (!stack.empty()) {
TreeNode& node = *stack.back();
if (!node.explored) {
// Unexplored node, which means the tree is incomplete.
return std::nullopt;
} else if (!node.inner) {
// Leaf node; produce output.
ret.emplace_back(stack.size() - 1, node.leaf->first, node.leaf->second);
node.done = true;
stack.pop_back();
} else if (node.sub[0]->done && !node.sub[1]->done && !node.sub[1]->explored && !node.sub[1]->hash.IsNull() &&
ComputeTapbranchHash(node.sub[1]->hash, node.sub[1]->hash) == node.hash) {
// Whenever there are nodes with two identical subtrees under it, we run into a problem:
// the control blocks for the leaves underneath those will be identical as well, and thus
// they will all be matched to the same path in the tree. The result is that at the location
// where the duplicate occurred, the left child will contain a normal tree that can be explored
// and processed, but the right one will remain unexplored.
//
// This situation can be detected, by encountering an inner node with unexplored right subtree
// with known hash, and H_TapBranch(hash, hash) is equal to the parent node (this node)'s hash.
//
// To deal with this, simply process the left tree a second time (set its done flag to false;
// noting that the done flag of its children have already been set to false after processing
// those). To avoid ending up in an infinite loop, set the done flag of the right (unexplored)
// subtree to true.
node.sub[0]->done = false;
node.sub[1]->done = true;
} else if (node.sub[0]->done && node.sub[1]->done) {
// An internal node which we're finished with.
node.sub[0]->done = false;
node.sub[1]->done = false;
node.done = true;
stack.pop_back();
} else if (!node.sub[0]->done) {
// An internal node whose left branch hasn't been processed yet. Do so first.
stack.push_back(&*node.sub[0]);
} else if (!node.sub[1]->done) {
// An internal node whose right branch hasn't been processed yet. Do so first.
stack.push_back(&*node.sub[1]);
}
}
return ret;
}
std::vector<std::tuple<uint8_t, uint8_t, std::vector<unsigned char>>> TaprootBuilder::GetTreeTuples() const
{
assert(IsComplete());
std::vector<std::tuple<uint8_t, uint8_t, std::vector<unsigned char>>> tuples;
if (m_branch.size()) {
const auto& leaves = m_branch[0]->leaves;
for (const auto& leaf : leaves) {
assert(leaf.merkle_branch.size() <= TAPROOT_CONTROL_MAX_NODE_COUNT);
uint8_t depth = (uint8_t)leaf.merkle_branch.size();
uint8_t leaf_ver = (uint8_t)leaf.leaf_version;
tuples.push_back(std::make_tuple(depth, leaf_ver, leaf.script));
}
}
return tuples;
}

View File

@@ -175,136 +175,4 @@ std::optional<std::pair<int, std::vector<Span<const unsigned char>>>> MatchMulti
/** Generate a multisig script. */
CScript GetScriptForMultisig(int nRequired, const std::vector<CPubKey>& keys);
struct ShortestVectorFirstComparator
{
bool operator()(const std::vector<unsigned char>& a, const std::vector<unsigned char>& b) const
{
if (a.size() < b.size()) return true;
if (a.size() > b.size()) return false;
return a < b;
}
};
struct TaprootSpendData
{
/** The BIP341 internal key. */
XOnlyPubKey internal_key;
/** The Merkle root of the script tree (0 if no scripts). */
uint256 merkle_root;
/** Map from (script, leaf_version) to (sets of) control blocks.
* More than one control block for a given script is only possible if it
* appears in multiple branches of the tree. We keep them all so that
* inference can reconstruct the full tree. Within each set, the control
* blocks are sorted by size, so that the signing logic can easily
* prefer the cheapest one. */
std::map<std::pair<std::vector<unsigned char>, int>, std::set<std::vector<unsigned char>, ShortestVectorFirstComparator>> scripts;
/** Merge other TaprootSpendData (for the same scriptPubKey) into this. */
void Merge(TaprootSpendData other);
};
/** Utility class to construct Taproot outputs from internal key and script tree. */
class TaprootBuilder
{
private:
/** Information about a tracked leaf in the Merkle tree. */
struct LeafInfo
{
std::vector<unsigned char> script; //!< The script.
int leaf_version; //!< The leaf version for that script.
std::vector<uint256> merkle_branch; //!< The hashing partners above this leaf.
};
/** Information associated with a node in the Merkle tree. */
struct NodeInfo
{
/** Merkle hash of this node. */
uint256 hash;
/** Tracked leaves underneath this node (either from the node itself, or its children).
* The merkle_branch field of each is the partners to get to *this* node. */
std::vector<LeafInfo> leaves;
};
/** Whether the builder is in a valid state so far. */
bool m_valid = true;
/** The current state of the builder.
*
* For each level in the tree, one NodeInfo object may be present. m_branch[0]
* is information about the root; further values are for deeper subtrees being
* explored.
*
* For every right branch taken to reach the position we're currently
* working in, there will be a (non-nullopt) entry in m_branch corresponding
* to the left branch at that level.
*
* For example, imagine this tree: - N0 -
* / \
* N1 N2
* / \ / \
* A B C N3
* / \
* D E
*
* Initially, m_branch is empty. After processing leaf A, it would become
* {nullopt, nullopt, A}. When processing leaf B, an entry at level 2 already
* exists, and it would thus be combined with it to produce a level 1 one,
* resulting in {nullopt, N1}. Adding C and D takes us to {nullopt, N1, C}
* and {nullopt, N1, C, D} respectively. When E is processed, it is combined
* with D, and then C, and then N1, to produce the root, resulting in {N0}.
*
* This structure allows processing with just O(log n) overhead if the leaves
* are computed on the fly.
*
* As an invariant, there can never be nullopt entries at the end. There can
* also not be more than 128 entries (as that would mean more than 128 levels
* in the tree). The depth of newly added entries will always be at least
* equal to the current size of m_branch (otherwise it does not correspond
* to a depth-first traversal of a tree). m_branch is only empty if no entries
* have ever be processed. m_branch having length 1 corresponds to being done.
*/
std::vector<std::optional<NodeInfo>> m_branch;
XOnlyPubKey m_internal_key; //!< The internal key, set when finalizing.
XOnlyPubKey m_output_key; //!< The output key, computed when finalizing.
bool m_parity; //!< The tweak parity, computed when finalizing.
/** Combine information about a parent Merkle tree node from its child nodes. */
static NodeInfo Combine(NodeInfo&& a, NodeInfo&& b);
/** Insert information about a node at a certain depth, and propagate information up. */
void Insert(NodeInfo&& node, int depth);
public:
/** Add a new script at a certain depth in the tree. Add() operations must be called
* in depth-first traversal order of binary tree. If track is true, it will be included in
* the GetSpendData() output. */
TaprootBuilder& Add(int depth, Span<const unsigned char> script, int leaf_version, bool track = true);
/** Like Add(), but for a Merkle node with a given hash to the tree. */
TaprootBuilder& AddOmitted(int depth, const uint256& hash);
/** Finalize the construction. Can only be called when IsComplete() is true.
internal_key.IsFullyValid() must be true. */
TaprootBuilder& Finalize(const XOnlyPubKey& internal_key);
/** Return true if so far all input was valid. */
bool IsValid() const { return m_valid; }
/** Return whether there were either no leaves, or the leaves form a Huffman tree. */
bool IsComplete() const { return m_valid && (m_branch.size() == 0 || (m_branch.size() == 1 && m_branch[0].has_value())); }
/** Compute scriptPubKey (after Finalize()). */
WitnessV1Taproot GetOutput();
/** Check if a list of depths is legal (will lead to IsComplete()). */
static bool ValidDepths(const std::vector<int>& depths);
/** Compute spending data (after Finalize()). */
TaprootSpendData GetSpendData() const;
/** Returns a vector of tuples representing the depth, leaf version, and script */
std::vector<std::tuple<uint8_t, uint8_t, std::vector<unsigned char>>> GetTreeTuples() const;
/** Returns true if there are any tapscripts */
bool HasScripts() const { return !m_branch.empty(); }
};
/** Given a TaprootSpendData and the output key, reconstruct its script tree.
*
* If the output doesn't match the spenddata, or if the data in spenddata is incomplete,
* std::nullopt is returned. Otherwise, a vector of (depth, script, leaf_ver) tuples is
* returned, corresponding to a depth-first traversal of the script tree.
*/
std::optional<std::vector<std::tuple<int, std::vector<unsigned char>, int>>> InferTaprootTree(const TaprootSpendData& spenddata, const XOnlyPubKey& output);
#endif // BITCOIN_SCRIPT_STANDARD_H

View File

@@ -6,6 +6,7 @@
#include <key_io.h>
#include <node/context.h>
#include <script/script.h>
#include <script/signingprovider.h>
#include <script/standard.h>
#include <test/util/setup_common.h>
#include <wallet/types.h>