clusterlin: replace cluster linearization with SFL (feature)

This replaces the existing LIMO linearization algorithm (which internally uses
ancestor set finding and candidate set finding) with the much more performant
spanning-forest linearization algorithm.

This removes the old candidate-set search algorithm, and several of its tests,
benchmarks, and needed utility code.

The worst case time per cost is similar to the previous algorithm, so
ACCEPTABLE_ITERS is unchanged.
This commit is contained in:
Pieter Wuille
2025-10-23 19:15:21 -04:00
parent 6a8fa821b8
commit 3efc94d656
7 changed files with 81 additions and 994 deletions

View File

@@ -18,21 +18,6 @@ using namespace util::hex_literals;
namespace {
/** Construct a linear graph. These are pessimal for AncestorCandidateFinder, as they maximize
* the number of ancestor set feerate updates. The best ancestor set is always the topmost
* remaining transaction, whose removal requires updating all remaining transactions' ancestor
* set feerates. */
template<typename SetType>
DepGraph<SetType> MakeLinearGraph(DepGraphIndex ntx)
{
DepGraph<SetType> depgraph;
for (DepGraphIndex i = 0; i < ntx; ++i) {
depgraph.AddTransaction({-int32_t(i), 1});
if (i > 0) depgraph.AddDependencies(SetType::Singleton(i - 1), i);
}
return depgraph;
}
/** Construct a wide graph (one root, with N-1 children that are otherwise unrelated, with
* increasing feerates). These graphs are pessimal for the LIMO step in Linearize, because
* rechunking is needed after every candidate (the last transaction gets picked every time).
@@ -48,136 +33,6 @@ DepGraph<SetType> MakeWideGraph(DepGraphIndex ntx)
return depgraph;
}
// Construct a difficult graph. These need at least sqrt(2^(n-1)) iterations in the implemented
// algorithm (purely empirically determined).
template<typename SetType>
DepGraph<SetType> MakeHardGraph(DepGraphIndex ntx)
{
DepGraph<SetType> depgraph;
for (DepGraphIndex i = 0; i < ntx; ++i) {
if (ntx & 1) {
// Odd cluster size.
//
// Mermaid diagram code for the resulting cluster for 11 transactions:
// ```mermaid
// graph BT
// T0["T0: 1/2"];T1["T1: 14/2"];T2["T2: 6/1"];T3["T3: 5/1"];T4["T4: 7/1"];
// T5["T5: 5/1"];T6["T6: 7/1"];T7["T7: 5/1"];T8["T8: 7/1"];T9["T9: 5/1"];
// T10["T10: 7/1"];
// T1-->T0;T1-->T2;T3-->T2;T4-->T3;T4-->T5;T6-->T5;T4-->T7;T8-->T7;T4-->T9;T10-->T9;
// ```
if (i == 0) {
depgraph.AddTransaction({1, 2});
} else if (i == 1) {
depgraph.AddTransaction({14, 2});
depgraph.AddDependencies(SetType::Singleton(0), 1);
} else if (i == 2) {
depgraph.AddTransaction({6, 1});
depgraph.AddDependencies(SetType::Singleton(2), 1);
} else if (i == 3) {
depgraph.AddTransaction({5, 1});
depgraph.AddDependencies(SetType::Singleton(2), 3);
} else if ((i & 1) == 0) {
depgraph.AddTransaction({7, 1});
depgraph.AddDependencies(SetType::Singleton(i - 1), i);
} else {
depgraph.AddTransaction({5, 1});
depgraph.AddDependencies(SetType::Singleton(i), 4);
}
} else {
// Even cluster size.
//
// Mermaid diagram code for the resulting cluster for 10 transactions:
// ```mermaid
// graph BT
// T0["T0: 1"];T1["T1: 3"];T2["T2: 1"];T3["T3: 4"];T4["T4: 0"];T5["T5: 4"];T6["T6: 0"];
// T7["T7: 4"];T8["T8: 0"];T9["T9: 4"];
// T1-->T0;T2-->T0;T3-->T2;T3-->T4;T5-->T4;T3-->T6;T7-->T6;T3-->T8;T9-->T8;
// ```
if (i == 0) {
depgraph.AddTransaction({1, 1});
} else if (i == 1) {
depgraph.AddTransaction({3, 1});
depgraph.AddDependencies(SetType::Singleton(0), 1);
} else if (i == 2) {
depgraph.AddTransaction({1, 1});
depgraph.AddDependencies(SetType::Singleton(0), 2);
} else if (i & 1) {
depgraph.AddTransaction({4, 1});
depgraph.AddDependencies(SetType::Singleton(i - 1), i);
} else {
depgraph.AddTransaction({0, 1});
depgraph.AddDependencies(SetType::Singleton(i), 3);
}
}
}
return depgraph;
}
/** Benchmark that does search-based candidate finding with a specified number of iterations.
*
* Its goal is measuring how much time every additional search iteration in linearization costs,
* by running with a low and a high count, subtracting the results, and divided by the number
* iterations difference.
*/
template<typename SetType>
void BenchLinearizeWorstCase(DepGraphIndex ntx, benchmark::Bench& bench, uint64_t iter_limit)
{
const auto depgraph = MakeHardGraph<SetType>(ntx);
uint64_t rng_seed = 0;
bench.run([&] {
SearchCandidateFinder finder(depgraph, rng_seed++);
auto [candidate, iters_performed] = finder.FindCandidateSet(iter_limit, {});
assert(iters_performed == iter_limit);
});
}
/** Benchmark for linearization improvement of a trivial linear graph using just ancestor sort.
*
* Its goal is measuring how much time linearization may take without any search iterations.
*
* If P is the benchmarked per-iteration count (obtained by running BenchLinearizeWorstCase for a
* high and a low iteration count, subtracting them, and dividing by the difference in count), and
* N is the resulting time of BenchLinearizeNoItersWorstCase*, then an invocation of Linearize with
* max_iterations=m should take no more than roughly N+m*P time. This may however be an
* overestimate, as the worst cases do not coincide (the ones that are worst for linearization
* without any search happen to be ones that do not need many search iterations).
*
* This benchmark exercises a worst case for AncestorCandidateFinder, but for which improvement is
* cheap.
*/
template<typename SetType>
void BenchLinearizeNoItersWorstCaseAnc(DepGraphIndex ntx, benchmark::Bench& bench)
{
const auto depgraph = MakeLinearGraph<SetType>(ntx);
uint64_t rng_seed = 0;
std::vector<DepGraphIndex> old_lin(ntx);
for (DepGraphIndex i = 0; i < ntx; ++i) old_lin[i] = i;
bench.run([&] {
Linearize(depgraph, /*max_iterations=*/0, rng_seed++, old_lin);
});
}
/** Benchmark for linearization improvement of a trivial wide graph using just ancestor sort.
*
* Its goal is measuring how much time improving a linearization may take without any search
* iterations, similar to the previous function.
*
* This benchmark exercises a worst case for improving an existing linearization, but for which
* AncestorCandidateFinder is cheap.
*/
template<typename SetType>
void BenchLinearizeNoItersWorstCaseLIMO(DepGraphIndex ntx, benchmark::Bench& bench)
{
const auto depgraph = MakeWideGraph<SetType>(ntx);
uint64_t rng_seed = 0;
std::vector<DepGraphIndex> old_lin(ntx);
for (DepGraphIndex i = 0; i < ntx; ++i) old_lin[i] = i;
bench.run([&] {
Linearize(depgraph, /*max_iterations=*/0, rng_seed++, old_lin);
});
}
template<typename SetType>
void BenchPostLinearizeWorstCase(DepGraphIndex ntx, benchmark::Bench& bench)
{
@@ -257,33 +112,6 @@ void BenchLinearizeOptimallyPerCost(benchmark::Bench& bench, const std::string&
} // namespace
static void Linearize16TxWorstCase20Iters(benchmark::Bench& bench) { BenchLinearizeWorstCase<BitSet<16>>(16, bench, 20); }
static void Linearize16TxWorstCase120Iters(benchmark::Bench& bench) { BenchLinearizeWorstCase<BitSet<16>>(16, bench, 120); }
static void Linearize32TxWorstCase5000Iters(benchmark::Bench& bench) { BenchLinearizeWorstCase<BitSet<32>>(32, bench, 5000); }
static void Linearize32TxWorstCase15000Iters(benchmark::Bench& bench) { BenchLinearizeWorstCase<BitSet<32>>(32, bench, 15000); }
static void Linearize48TxWorstCase5000Iters(benchmark::Bench& bench) { BenchLinearizeWorstCase<BitSet<48>>(48, bench, 5000); }
static void Linearize48TxWorstCase15000Iters(benchmark::Bench& bench) { BenchLinearizeWorstCase<BitSet<48>>(48, bench, 15000); }
static void Linearize64TxWorstCase5000Iters(benchmark::Bench& bench) { BenchLinearizeWorstCase<BitSet<64>>(64, bench, 5000); }
static void Linearize64TxWorstCase15000Iters(benchmark::Bench& bench) { BenchLinearizeWorstCase<BitSet<64>>(64, bench, 15000); }
static void Linearize75TxWorstCase5000Iters(benchmark::Bench& bench) { BenchLinearizeWorstCase<BitSet<75>>(75, bench, 5000); }
static void Linearize75TxWorstCase15000Iters(benchmark::Bench& bench) { BenchLinearizeWorstCase<BitSet<75>>(75, bench, 15000); }
static void Linearize99TxWorstCase5000Iters(benchmark::Bench& bench) { BenchLinearizeWorstCase<BitSet<99>>(99, bench, 5000); }
static void Linearize99TxWorstCase15000Iters(benchmark::Bench& bench) { BenchLinearizeWorstCase<BitSet<99>>(99, bench, 15000); }
static void LinearizeNoIters16TxWorstCaseAnc(benchmark::Bench& bench) { BenchLinearizeNoItersWorstCaseAnc<BitSet<16>>(16, bench); }
static void LinearizeNoIters32TxWorstCaseAnc(benchmark::Bench& bench) { BenchLinearizeNoItersWorstCaseAnc<BitSet<32>>(32, bench); }
static void LinearizeNoIters48TxWorstCaseAnc(benchmark::Bench& bench) { BenchLinearizeNoItersWorstCaseAnc<BitSet<48>>(48, bench); }
static void LinearizeNoIters64TxWorstCaseAnc(benchmark::Bench& bench) { BenchLinearizeNoItersWorstCaseAnc<BitSet<64>>(64, bench); }
static void LinearizeNoIters75TxWorstCaseAnc(benchmark::Bench& bench) { BenchLinearizeNoItersWorstCaseAnc<BitSet<75>>(75, bench); }
static void LinearizeNoIters99TxWorstCaseAnc(benchmark::Bench& bench) { BenchLinearizeNoItersWorstCaseAnc<BitSet<99>>(99, bench); }
static void LinearizeNoIters16TxWorstCaseLIMO(benchmark::Bench& bench) { BenchLinearizeNoItersWorstCaseLIMO<BitSet<16>>(16, bench); }
static void LinearizeNoIters32TxWorstCaseLIMO(benchmark::Bench& bench) { BenchLinearizeNoItersWorstCaseLIMO<BitSet<32>>(32, bench); }
static void LinearizeNoIters48TxWorstCaseLIMO(benchmark::Bench& bench) { BenchLinearizeNoItersWorstCaseLIMO<BitSet<48>>(48, bench); }
static void LinearizeNoIters64TxWorstCaseLIMO(benchmark::Bench& bench) { BenchLinearizeNoItersWorstCaseLIMO<BitSet<64>>(64, bench); }
static void LinearizeNoIters75TxWorstCaseLIMO(benchmark::Bench& bench) { BenchLinearizeNoItersWorstCaseLIMO<BitSet<75>>(75, bench); }
static void LinearizeNoIters99TxWorstCaseLIMO(benchmark::Bench& bench) { BenchLinearizeNoItersWorstCaseLIMO<BitSet<99>>(99, bench); }
static void PostLinearize16TxWorstCase(benchmark::Bench& bench) { BenchPostLinearizeWorstCase<BitSet<16>>(16, bench); }
static void PostLinearize32TxWorstCase(benchmark::Bench& bench) { BenchPostLinearizeWorstCase<BitSet<32>>(32, bench); }
static void PostLinearize48TxWorstCase(benchmark::Bench& bench) { BenchPostLinearizeWorstCase<BitSet<48>>(48, bench); }
@@ -350,33 +178,6 @@ static void LinearizeOptimallyPerCost(benchmark::Bench& bench)
BenchLinearizeOptimallyPerCost(bench, "LinearizeOptimallySyntheticPerCost", CLUSTERS_SYNTHETIC);
}
BENCHMARK(Linearize16TxWorstCase20Iters, benchmark::PriorityLevel::HIGH);
BENCHMARK(Linearize16TxWorstCase120Iters, benchmark::PriorityLevel::HIGH);
BENCHMARK(Linearize32TxWorstCase5000Iters, benchmark::PriorityLevel::HIGH);
BENCHMARK(Linearize32TxWorstCase15000Iters, benchmark::PriorityLevel::HIGH);
BENCHMARK(Linearize48TxWorstCase5000Iters, benchmark::PriorityLevel::HIGH);
BENCHMARK(Linearize48TxWorstCase15000Iters, benchmark::PriorityLevel::HIGH);
BENCHMARK(Linearize64TxWorstCase5000Iters, benchmark::PriorityLevel::HIGH);
BENCHMARK(Linearize64TxWorstCase15000Iters, benchmark::PriorityLevel::HIGH);
BENCHMARK(Linearize75TxWorstCase5000Iters, benchmark::PriorityLevel::HIGH);
BENCHMARK(Linearize75TxWorstCase15000Iters, benchmark::PriorityLevel::HIGH);
BENCHMARK(Linearize99TxWorstCase5000Iters, benchmark::PriorityLevel::HIGH);
BENCHMARK(Linearize99TxWorstCase15000Iters, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeNoIters16TxWorstCaseAnc, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeNoIters32TxWorstCaseAnc, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeNoIters48TxWorstCaseAnc, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeNoIters64TxWorstCaseAnc, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeNoIters75TxWorstCaseAnc, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeNoIters99TxWorstCaseAnc, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeNoIters16TxWorstCaseLIMO, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeNoIters32TxWorstCaseLIMO, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeNoIters48TxWorstCaseLIMO, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeNoIters64TxWorstCaseLIMO, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeNoIters75TxWorstCaseLIMO, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeNoIters99TxWorstCaseLIMO, benchmark::PriorityLevel::HIGH);
BENCHMARK(PostLinearize16TxWorstCase, benchmark::PriorityLevel::HIGH);
BENCHMARK(PostLinearize32TxWorstCase, benchmark::PriorityLevel::HIGH);
BENCHMARK(PostLinearize48TxWorstCase, benchmark::PriorityLevel::HIGH);

View File

@@ -411,13 +411,6 @@ struct SetInfo
return {transactions - other.transactions, feerate - other.feerate};
}
/** Construct a new SetInfo equal to this, with more transactions added (which may overlap
* with the existing transactions in the SetInfo). */
[[nodiscard]] SetInfo Add(const DepGraph<SetType>& depgraph, const SetType& txn) const noexcept
{
return {transactions | txn, feerate + depgraph.FeeRate(txn - transactions)};
}
/** Swap two SetInfo objects. */
friend void swap(SetInfo& a, SetInfo& b) noexcept
{
@@ -576,108 +569,6 @@ public:
}
};
/** Class encapsulating the state needed to find the best remaining ancestor set.
*
* It is initialized for an entire DepGraph, and parts of the graph can be dropped by calling
* MarkDone.
*
* As long as any part of the graph remains, FindCandidateSet() can be called which will return a
* SetInfo with the highest-feerate ancestor set that remains (an ancestor set is a single
* transaction together with all its remaining ancestors).
*/
template<typename SetType>
class AncestorCandidateFinder
{
/** Internal dependency graph. */
const DepGraph<SetType>& m_depgraph;
/** Which transaction are left to include. */
SetType m_todo;
/** Precomputed ancestor-set feerates (only kept up-to-date for indices in m_todo). */
std::vector<FeeFrac> m_ancestor_set_feerates;
public:
/** Construct an AncestorCandidateFinder for a given cluster.
*
* Complexity: O(N^2) where N=depgraph.TxCount().
*/
AncestorCandidateFinder(const DepGraph<SetType>& depgraph LIFETIMEBOUND) noexcept :
m_depgraph(depgraph),
m_todo{depgraph.Positions()},
m_ancestor_set_feerates(depgraph.PositionRange())
{
// Precompute ancestor-set feerates.
for (DepGraphIndex i : m_depgraph.Positions()) {
/** The remaining ancestors for transaction i. */
SetType anc_to_add = m_depgraph.Ancestors(i);
FeeFrac anc_feerate;
// Reuse accumulated feerate from first ancestor, if usable.
Assume(anc_to_add.Any());
DepGraphIndex first = anc_to_add.First();
if (first < i) {
anc_feerate = m_ancestor_set_feerates[first];
Assume(!anc_feerate.IsEmpty());
anc_to_add -= m_depgraph.Ancestors(first);
}
// Add in other ancestors (which necessarily include i itself).
Assume(anc_to_add[i]);
anc_feerate += m_depgraph.FeeRate(anc_to_add);
// Store the result.
m_ancestor_set_feerates[i] = anc_feerate;
}
}
/** Remove a set of transactions from the set of to-be-linearized ones.
*
* The same transaction may not be MarkDone()'d twice.
*
* Complexity: O(N*M) where N=depgraph.TxCount(), M=select.Count().
*/
void MarkDone(SetType select) noexcept
{
Assume(select.Any());
Assume(select.IsSubsetOf(m_todo));
m_todo -= select;
for (auto i : select) {
auto feerate = m_depgraph.FeeRate(i);
for (auto j : m_depgraph.Descendants(i) & m_todo) {
m_ancestor_set_feerates[j] -= feerate;
}
}
}
/** Check whether any unlinearized transactions remain. */
bool AllDone() const noexcept
{
return m_todo.None();
}
/** Count the number of remaining unlinearized transactions. */
DepGraphIndex NumRemaining() const noexcept
{
return m_todo.Count();
}
/** Find the best (highest-feerate, smallest among those in case of a tie) ancestor set
* among the remaining transactions. Requires !AllDone().
*
* Complexity: O(N) where N=depgraph.TxCount();
*/
SetInfo<SetType> FindCandidateSet() const noexcept
{
Assume(!AllDone());
std::optional<DepGraphIndex> best;
for (auto i : m_todo) {
if (best.has_value()) {
Assume(!m_ancestor_set_feerates[i].IsEmpty());
if (!(m_ancestor_set_feerates[i] > m_ancestor_set_feerates[*best])) continue;
}
best = i;
}
Assume(best.has_value());
return {m_depgraph.Ancestors(*best) & m_todo, m_ancestor_set_feerates[*best]};
}
};
/** Class to represent the internal state of the spanning-forest linearization (SFL) algorithm.
*
* At all times, each dependency is marked as either "active" or "inactive". The subset of active
@@ -1456,391 +1347,10 @@ public:
}
};
/** Class encapsulating the state needed to perform search for good candidate sets.
*
* It is initialized for an entire DepGraph, and parts of the graph can be dropped by calling
* MarkDone().
*
* As long as any part of the graph remains, FindCandidateSet() can be called to perform a search
* over the set of topologically-valid subsets of that remainder, with a limit on how many
* combinations are tried.
*/
template<typename SetType>
class SearchCandidateFinder
{
/** Internal RNG. */
InsecureRandomContext m_rng;
/** m_sorted_to_original[i] is the original position that sorted transaction position i had. */
std::vector<DepGraphIndex> m_sorted_to_original;
/** m_original_to_sorted[i] is the sorted position original transaction position i has. */
std::vector<DepGraphIndex> m_original_to_sorted;
/** Internal dependency graph for the cluster (with transactions in decreasing individual
* feerate order). */
DepGraph<SetType> m_sorted_depgraph;
/** Which transactions are left to do (indices in m_sorted_depgraph's order). */
SetType m_todo;
/** Given a set of transactions with sorted indices, get their original indices. */
SetType SortedToOriginal(const SetType& arg) const noexcept
{
SetType ret;
for (auto pos : arg) ret.Set(m_sorted_to_original[pos]);
return ret;
}
/** Given a set of transactions with original indices, get their sorted indices. */
SetType OriginalToSorted(const SetType& arg) const noexcept
{
SetType ret;
for (auto pos : arg) ret.Set(m_original_to_sorted[pos]);
return ret;
}
public:
/** Construct a candidate finder for a graph.
*
* @param[in] depgraph Dependency graph for the to-be-linearized cluster.
* @param[in] rng_seed A random seed to control the search order.
*
* Complexity: O(N^2) where N=depgraph.Count().
*/
SearchCandidateFinder(const DepGraph<SetType>& depgraph, uint64_t rng_seed) noexcept :
m_rng(rng_seed),
m_sorted_to_original(depgraph.TxCount()),
m_original_to_sorted(depgraph.PositionRange())
{
// Determine reordering mapping, by sorting by decreasing feerate. Unused positions are
// not included, as they will never be looked up anyway.
DepGraphIndex sorted_pos{0};
for (auto i : depgraph.Positions()) {
m_sorted_to_original[sorted_pos++] = i;
}
std::sort(m_sorted_to_original.begin(), m_sorted_to_original.end(), [&](auto a, auto b) {
auto feerate_cmp = depgraph.FeeRate(a) <=> depgraph.FeeRate(b);
if (feerate_cmp == 0) return a < b;
return feerate_cmp > 0;
});
// Compute reverse mapping.
for (DepGraphIndex i = 0; i < m_sorted_to_original.size(); ++i) {
m_original_to_sorted[m_sorted_to_original[i]] = i;
}
// Compute reordered dependency graph.
m_sorted_depgraph = DepGraph(depgraph, m_original_to_sorted, m_sorted_to_original.size());
m_todo = m_sorted_depgraph.Positions();
}
/** Check whether any unlinearized transactions remain. */
bool AllDone() const noexcept
{
return m_todo.None();
}
/** Find a high-feerate topologically-valid subset of what remains of the cluster.
* Requires !AllDone().
*
* @param[in] max_iterations The maximum number of optimization steps that will be performed.
* @param[in] best A set/feerate pair with an already-known good candidate. This may
* be empty.
* @return A pair of:
* - The best (highest feerate, smallest size as tiebreaker)
* topologically valid subset (and its feerate) that was
* encountered during search. It will be at least as good as the
* best passed in (if not empty).
* - The number of optimization steps that were performed. This will
* be <= max_iterations. If strictly < max_iterations, the
* returned subset is optimal.
*
* Complexity: possibly O(N * min(max_iterations, sqrt(2^N))) where N=depgraph.TxCount().
*/
std::pair<SetInfo<SetType>, uint64_t> FindCandidateSet(uint64_t max_iterations, SetInfo<SetType> best) noexcept
{
Assume(!AllDone());
// Convert the provided best to internal sorted indices.
best.transactions = OriginalToSorted(best.transactions);
/** Type for work queue items. */
struct WorkItem
{
/** Set of transactions definitely included (and its feerate). This must be a subset
* of m_todo, and be topologically valid (includes all in-m_todo ancestors of
* itself). */
SetInfo<SetType> inc;
/** Set of undecided transactions. This must be a subset of m_todo, and have no overlap
* with inc. The set (inc | und) must be topologically valid. */
SetType und;
/** (Only when inc is not empty) The best feerate of any superset of inc that is also a
* subset of (inc | und), without requiring it to be topologically valid. It forms a
* conservative upper bound on how good a set this work item can give rise to.
* Transactions whose feerate is below best's are ignored when determining this value,
* which means it may technically be an underestimate, but if so, this work item
* cannot result in something that beats best anyway. */
FeeFrac pot_feerate;
/** Construct a new work item. */
WorkItem(SetInfo<SetType>&& i, SetType&& u, FeeFrac&& p_f) noexcept :
inc(std::move(i)), und(std::move(u)), pot_feerate(std::move(p_f))
{
Assume(pot_feerate.IsEmpty() == inc.feerate.IsEmpty());
}
/** Swap two WorkItems. */
void Swap(WorkItem& other) noexcept
{
swap(inc, other.inc);
swap(und, other.und);
swap(pot_feerate, other.pot_feerate);
}
};
/** The queue of work items. */
VecDeque<WorkItem> queue;
queue.reserve(std::max<size_t>(256, 2 * m_todo.Count()));
// Create initial entries per connected component of m_todo. While clusters themselves are
// generally connected, this is not necessarily true after some parts have already been
// removed from m_todo. Without this, effort can be wasted on searching "inc" sets that
// span multiple components.
auto to_cover = m_todo;
do {
auto component = m_sorted_depgraph.FindConnectedComponent(to_cover);
to_cover -= component;
// If best is not provided, set it to the first component, so that during the work
// processing loop below, and during the add_fn/split_fn calls, we do not need to deal
// with the best=empty case.
if (best.feerate.IsEmpty()) best = SetInfo(m_sorted_depgraph, component);
queue.emplace_back(/*inc=*/SetInfo<SetType>{},
/*und=*/std::move(component),
/*pot_feerate=*/FeeFrac{});
} while (to_cover.Any());
/** Local copy of the iteration limit. */
uint64_t iterations_left = max_iterations;
/** The set of transactions in m_todo which have feerate > best's. */
SetType imp = m_todo;
while (imp.Any()) {
DepGraphIndex check = imp.Last();
if (m_sorted_depgraph.FeeRate(check) >> best.feerate) break;
imp.Reset(check);
}
/** Internal function to add an item to the queue of elements to explore if there are any
* transactions left to split on, possibly improving it before doing so, and to update
* best/imp.
*
* - inc: the "inc" value for the new work item (must be topological).
* - und: the "und" value for the new work item ((inc | und) must be topological).
*/
auto add_fn = [&](SetInfo<SetType> inc, SetType und) noexcept {
/** SetInfo object with the set whose feerate will become the new work item's
* pot_feerate. It starts off equal to inc. */
auto pot = inc;
if (!inc.feerate.IsEmpty()) {
// Add entries to pot. We iterate over all undecided transactions whose feerate is
// higher than best. While undecided transactions of lower feerate may improve pot,
// the resulting pot feerate cannot possibly exceed best's (and this item will be
// skipped in split_fn anyway).
for (auto pos : imp & und) {
// Determine if adding transaction pos to pot (ignoring topology) would improve
// it. If not, we're done updating pot. This relies on the fact that
// m_sorted_depgraph, and thus the transactions iterated over, are in decreasing
// individual feerate order.
if (!(m_sorted_depgraph.FeeRate(pos) >> pot.feerate)) break;
pot.Set(m_sorted_depgraph, pos);
}
// The "jump ahead" optimization: whenever pot has a topologically-valid subset,
// that subset can be added to inc. Any subset of (pot - inc) has the property that
// its feerate exceeds that of any set compatible with this work item (superset of
// inc, subset of (inc | und)). Thus, if T is a topological subset of pot, and B is
// the best topologically-valid set compatible with this work item, and (T - B) is
// non-empty, then (T | B) is better than B and also topological. This is in
// contradiction with the assumption that B is best. Thus, (T - B) must be empty,
// or T must be a subset of B.
//
// See https://delvingbitcoin.org/t/how-to-linearize-your-cluster/303 section 2.4.
const auto init_inc = inc.transactions;
for (auto pos : pot.transactions - inc.transactions) {
// If the transaction's ancestors are a subset of pot, we can add it together
// with its ancestors to inc. Just update the transactions here; the feerate
// update happens below.
auto anc_todo = m_sorted_depgraph.Ancestors(pos) & m_todo;
if (anc_todo.IsSubsetOf(pot.transactions)) inc.transactions |= anc_todo;
}
// Finally update und and inc's feerate to account for the added transactions.
und -= inc.transactions;
inc.feerate += m_sorted_depgraph.FeeRate(inc.transactions - init_inc);
// If inc's feerate is better than best's, remember it as our new best.
if (inc.feerate > best.feerate) {
best = inc;
// See if we can remove any entries from imp now.
while (imp.Any()) {
DepGraphIndex check = imp.Last();
if (m_sorted_depgraph.FeeRate(check) >> best.feerate) break;
imp.Reset(check);
}
}
// If no potential transactions exist beyond the already included ones, no
// improvement is possible anymore.
if (pot.feerate.size == inc.feerate.size) return;
// At this point und must be non-empty. If it were empty then pot would equal inc.
Assume(und.Any());
} else {
Assume(inc.transactions.None());
// If inc is empty, we just make sure there are undecided transactions left to
// split on.
if (und.None()) return;
}
// Actually construct a new work item on the queue. Due to the switch to DFS when queue
// space runs out (see below), we know that no reallocation of the queue should ever
// occur.
Assume(queue.size() < queue.capacity());
queue.emplace_back(/*inc=*/std::move(inc),
/*und=*/std::move(und),
/*pot_feerate=*/std::move(pot.feerate));
};
/** Internal process function. It takes an existing work item, and splits it in two: one
* with a particular transaction (and its ancestors) included, and one with that
* transaction (and its descendants) excluded. */
auto split_fn = [&](WorkItem&& elem) noexcept {
// Any queue element must have undecided transactions left, otherwise there is nothing
// to explore anymore.
Assume(elem.und.Any());
// The included and undecided set are all subsets of m_todo.
Assume(elem.inc.transactions.IsSubsetOf(m_todo) && elem.und.IsSubsetOf(m_todo));
// Included transactions cannot be undecided.
Assume(!elem.inc.transactions.Overlaps(elem.und));
// If pot is empty, then so is inc.
Assume(elem.inc.feerate.IsEmpty() == elem.pot_feerate.IsEmpty());
const DepGraphIndex first = elem.und.First();
if (!elem.inc.feerate.IsEmpty()) {
// If no undecided transactions remain with feerate higher than best, this entry
// cannot be improved beyond best.
if (!elem.und.Overlaps(imp)) return;
// We can ignore any queue item whose potential feerate isn't better than the best
// seen so far.
if (elem.pot_feerate <= best.feerate) return;
} else {
// In case inc is empty use a simpler alternative check.
if (m_sorted_depgraph.FeeRate(first) <= best.feerate) return;
}
// Decide which transaction to split on. Splitting is how new work items are added, and
// how progress is made. One split transaction is chosen among the queue item's
// undecided ones, and:
// - A work item is (potentially) added with that transaction plus its remaining
// descendants excluded (removed from the und set).
// - A work item is (potentially) added with that transaction plus its remaining
// ancestors included (added to the inc set).
//
// To decide what to split on, consider the undecided ancestors of the highest
// individual feerate undecided transaction. Pick the one which reduces the search space
// most. Let I(t) be the size of the undecided set after including t, and E(t) the size
// of the undecided set after excluding t. Then choose the split transaction t such
// that 2^I(t) + 2^E(t) is minimal, tie-breaking by highest individual feerate for t.
DepGraphIndex split = 0;
const auto select = elem.und & m_sorted_depgraph.Ancestors(first);
Assume(select.Any());
std::optional<std::pair<DepGraphIndex, DepGraphIndex>> split_counts;
for (auto t : select) {
// Call max = max(I(t), E(t)) and min = min(I(t), E(t)). Let counts = {max,min}.
// Sorting by the tuple counts is equivalent to sorting by 2^I(t) + 2^E(t). This
// expression is equal to 2^max + 2^min = 2^max * (1 + 1/2^(max - min)). The second
// factor (1 + 1/2^(max - min)) there is in (1,2]. Thus increasing max will always
// increase it, even when min decreases. Because of this, we can first sort by max.
std::pair<DepGraphIndex, DepGraphIndex> counts{
(elem.und - m_sorted_depgraph.Ancestors(t)).Count(),
(elem.und - m_sorted_depgraph.Descendants(t)).Count()};
if (counts.first < counts.second) std::swap(counts.first, counts.second);
// Remember the t with the lowest counts.
if (!split_counts.has_value() || counts < *split_counts) {
split = t;
split_counts = counts;
}
}
// Since there was at least one transaction in select, we must always find one.
Assume(split_counts.has_value());
// Add a work item corresponding to exclusion of the split transaction.
const auto& desc = m_sorted_depgraph.Descendants(split);
add_fn(/*inc=*/elem.inc,
/*und=*/elem.und - desc);
// Add a work item corresponding to inclusion of the split transaction.
const auto anc = m_sorted_depgraph.Ancestors(split) & m_todo;
add_fn(/*inc=*/elem.inc.Add(m_sorted_depgraph, anc),
/*und=*/elem.und - anc);
// Account for the performed split.
--iterations_left;
};
// Work processing loop.
//
// New work items are always added at the back of the queue, but items to process use a
// hybrid approach where they can be taken from the front or the back.
//
// Depth-first search (DFS) corresponds to always taking from the back of the queue. This
// is very memory-efficient (linear in the number of transactions). Breadth-first search
// (BFS) corresponds to always taking from the front, which potentially uses more memory
// (up to exponential in the transaction count), but seems to work better in practice.
//
// The approach here combines the two: use BFS (plus random swapping) until the queue grows
// too large, at which point we temporarily switch to DFS until the size shrinks again.
while (!queue.empty()) {
// Randomly swap the first two items to randomize the search order.
if (queue.size() > 1 && m_rng.randbool()) {
queue[0].Swap(queue[1]);
}
// Processing the first queue item, and then using DFS for everything it gives rise to,
// may increase the queue size by the number of undecided elements in there, minus 1
// for the first queue item being removed. Thus, only when that pushes the queue over
// its capacity can we not process from the front (BFS), and should we use DFS.
while (queue.size() - 1 + queue.front().und.Count() > queue.capacity()) {
if (!iterations_left) break;
auto elem = queue.back();
queue.pop_back();
split_fn(std::move(elem));
}
// Process one entry from the front of the queue (BFS exploration)
if (!iterations_left) break;
auto elem = queue.front();
queue.pop_front();
split_fn(std::move(elem));
}
// Return the found best set (converted to the original transaction indices), and the
// number of iterations performed.
best.transactions = SortedToOriginal(best.transactions);
return {std::move(best), max_iterations - iterations_left};
}
/** Remove a subset of transactions from the cluster being linearized.
*
* Complexity: O(N) where N=done.Count().
*/
void MarkDone(const SetType& done) noexcept
{
const auto done_sorted = OriginalToSorted(done);
Assume(done_sorted.Any());
Assume(done_sorted.IsSubsetOf(m_todo));
m_todo -= done_sorted;
}
};
/** Find or improve a linearization for a cluster.
*
* @param[in] depgraph Dependency graph of the cluster to be linearized.
* @param[in] max_iterations Upper bound on the number of optimization steps that will be done.
* @param[in] max_iterations Upper bound on the amount of work that will be done.
* @param[in] rng_seed A random number seed to control search order. This prevents peers
* from predicting exactly which clusters would be hard for us to
* linearize.
@@ -1852,85 +1362,28 @@ public:
* - A boolean indicating whether the result is guaranteed to be
* optimal.
* - How many optimization steps were actually performed.
*
* Complexity: possibly O(N * min(max_iterations + N, sqrt(2^N))) where N=depgraph.TxCount().
*/
template<typename SetType>
std::tuple<std::vector<DepGraphIndex>, bool, uint64_t> Linearize(const DepGraph<SetType>& depgraph, uint64_t max_iterations, uint64_t rng_seed, std::span<const DepGraphIndex> old_linearization = {}) noexcept
{
Assume(old_linearization.empty() || old_linearization.size() == depgraph.TxCount());
if (depgraph.TxCount() == 0) return {{}, true, 0};
uint64_t iterations_left = max_iterations;
std::vector<DepGraphIndex> linearization;
AncestorCandidateFinder anc_finder(depgraph);
std::optional<SearchCandidateFinder<SetType>> src_finder;
linearization.reserve(depgraph.TxCount());
bool optimal = true;
// Treat the initialization of SearchCandidateFinder as taking N^2/64 (rounded up) iterations
// (largely due to the cost of constructing the internal sorted-by-feerate DepGraph inside
// SearchCandidateFinder), a rough approximation based on benchmark. If we don't have that
// many, don't start it.
uint64_t start_iterations = (uint64_t{depgraph.TxCount()} * depgraph.TxCount() + 63) / 64;
if (iterations_left > start_iterations) {
iterations_left -= start_iterations;
src_finder.emplace(depgraph, rng_seed);
(void)rng_seed; // Unused for now.
/** Initialize a spanning forest data structure for this cluster. */
SpanningForestState forest(depgraph);
if (!old_linearization.empty()) {
forest.LoadLinearization(old_linearization);
} else {
forest.MakeTopological();
}
/** Chunking of what remains of the old linearization. */
LinearizationChunking old_chunking(depgraph, old_linearization);
while (true) {
// Find the highest-feerate prefix of the remainder of old_linearization.
SetInfo<SetType> best_prefix;
if (old_chunking.NumChunksLeft()) best_prefix = old_chunking.GetChunk(0);
// Then initialize best to be either the best remaining ancestor set, or the first chunk.
auto best = anc_finder.FindCandidateSet();
if (!best_prefix.feerate.IsEmpty() && best_prefix.feerate >= best.feerate) best = best_prefix;
uint64_t iterations_done_now = 0;
uint64_t max_iterations_now = 0;
if (src_finder) {
// Treat the invocation of SearchCandidateFinder::FindCandidateSet() as costing N/4
// up-front (rounded up) iterations (largely due to the cost of connected-component
// splitting), a rough approximation based on benchmarks.
uint64_t base_iterations = (anc_finder.NumRemaining() + 3) / 4;
if (iterations_left > base_iterations) {
// Invoke bounded search to update best, with up to half of our remaining
// iterations as limit.
iterations_left -= base_iterations;
max_iterations_now = (iterations_left + 1) / 2;
std::tie(best, iterations_done_now) = src_finder->FindCandidateSet(max_iterations_now, best);
iterations_left -= iterations_done_now;
}
}
if (iterations_done_now == max_iterations_now) {
optimal = false;
// If the search result is not (guaranteed to be) optimal, run intersections to make
// sure we don't pick something that makes us unable to reach further diagram points
// of the old linearization.
if (old_chunking.NumChunksLeft() > 0) {
best = old_chunking.IntersectPrefixes(best);
}
}
// Add to output in topological order.
depgraph.AppendTopo(linearization, best.transactions);
// Update state to reflect best is no longer to be linearized.
anc_finder.MarkDone(best.transactions);
if (anc_finder.AllDone()) break;
if (src_finder) src_finder->MarkDone(best.transactions);
if (old_chunking.NumChunksLeft() > 0) {
old_chunking.MarkDone(best.transactions);
// Make improvement steps to it until we hit the max_iterations limit, or an optimal result
// is found.
bool optimal = false;
while (forest.GetCost() < max_iterations) {
if (!forest.OptimizeStep()) {
optimal = true;
break;
}
}
return {std::move(linearization), optimal, max_iterations - iterations_left};
return {forest.GetLinearization(), optimal, forest.GetCost()};
}
/** Improve a given linearization.

View File

@@ -88,8 +88,10 @@ void TestOptimalLinearization(const std::vector<uint8_t>& enc, const std::vector
SanityCheck(depgraph, lin);
auto chunking = ChunkLinearization(depgraph, lin);
BOOST_CHECK(std::is_eq(CompareChunks(chunking, optimal_diagram)));
// Verify that the chunks are minimal.
BOOST_CHECK(chunking.size() == optimal_diagram.size());
// TODO: temporarily disabled; SFL does not guarantee minimal chunks. This will be
// reinstated in a future commit.
// // Verify that the chunks are minimal.
// BOOST_CHECK(chunking.size() == optimal_diagram.size());
}
tx_count = depgraph.PositionRange();
};

View File

@@ -24,29 +24,22 @@
* possibly by comparison with other implementations (at the end of the line ->).
* <<---: The right side is implemented using the left side.
*
* +-----------------------+
* | SearchCandidateFinder | <<---------------------\
* +-----------------------+ |
* | +-----------+ +---------------------+
* | | Linearize | | SpanningForestState |
* | +-----------+ +---------------------+
* | +-------------------------+ | | |
* | | AncestorCandidateFinder | <<--------/ | |
* | +-------------------------+ | |
* | | ^ | ^^ PRODUCTION CODE |
* | | | | || |
* +---------------------+ +-----------+
* | SpanningForestState | <<-------------------- | Linearize |
* +---------------------+ +-----------+
* | |
* | | ^^ PRODUCTION CODE
* | | ||
* ==============================================================================================
* | | | | || |
* | clusterlin_ancestor_finder* | | vv TEST CODE |
* | | | |
* |-clusterlin_search_finder* | |-clusterlin_linearize* |
* | | | |
* v | v clusterlin_sfl--|
* +-----------------------+ | +-----------------+ |
* | SimpleCandidateFinder | <<-------------------| SimpleLinearize |<----------------/
* +-----------------------+ | +-----------------+
* | | |
* +-------------------/ |
* | | ||
* |-clusterlin_sfl* | vv TEST CODE
* | |
* \------------------------------------\ |-clusterlin_linearize*
* | |
* v v
* +-----------------------+ +-----------------+
* | SimpleCandidateFinder | <<-------------------| SimpleLinearize |
* +-----------------------+ +-----------------+
* | |
* |-clusterlin_simple_finder* |-clusterlin_simple_linearize*
* v v
@@ -78,11 +71,8 @@ using namespace cluster_linearize;
namespace {
/** A simple finder class for candidate sets.
*
* This class matches SearchCandidateFinder in interface and behavior, though with fewer
* optimizations.
*/
/** A simple finder class for candidate sets (topologically-valid subsets with high feerate), only
* used by SimpleLinearize below. */
template<typename SetType>
class SimpleCandidateFinder
{
@@ -153,7 +143,8 @@ public:
/** A very simple finder class for optimal candidate sets, which tries every subset.
*
* It is even simpler than SimpleCandidateFinder, and exists just to help test the correctness of
* SimpleCandidateFinder, which is then used to test the correctness of SearchCandidateFinder.
* SimpleCandidateFinder, so that it can be used in SimpleLinearize, which is then used to test the
* correctness of Linearize.
*/
template<typename SetType>
class ExhaustiveCandidateFinder
@@ -204,8 +195,8 @@ public:
/** A simple linearization algorithm.
*
* This matches Linearize() in interface and behavior, though with fewer optimizations, lacking
* the ability to pass in an existing linearization, and using just SimpleCandidateFinder rather
* than AncestorCandidateFinder and SearchCandidateFinder.
* the ability to pass in an existing linearization, and linearizing by simply finding the
* consecutive remaining highest-feerate topological subset using SimpleCandidateFinder.
*/
template<typename SetType>
std::pair<std::vector<DepGraphIndex>, bool> SimpleLinearize(const DepGraph<SetType>& depgraph, uint64_t max_iterations)
@@ -766,68 +757,17 @@ FUZZ_TARGET(clusterlin_chunking)
assert(todo.None());
}
FUZZ_TARGET(clusterlin_ancestor_finder)
{
// Verify that AncestorCandidateFinder works as expected.
// Retrieve a depgraph from the fuzz input.
SpanReader reader(buffer);
DepGraph<TestBitSet> depgraph;
try {
reader >> Using<DepGraphFormatter>(depgraph);
} catch (const std::ios_base::failure&) {}
AncestorCandidateFinder anc_finder(depgraph);
auto todo = depgraph.Positions();
while (todo.Any()) {
// Call the ancestor finder's FindCandidateSet for what remains of the graph.
assert(!anc_finder.AllDone());
assert(todo.Count() == anc_finder.NumRemaining());
auto best_anc = anc_finder.FindCandidateSet();
// Sanity check the result.
assert(best_anc.transactions.Any());
assert(best_anc.transactions.IsSubsetOf(todo));
assert(depgraph.FeeRate(best_anc.transactions) == best_anc.feerate);
assert(depgraph.IsConnected(best_anc.transactions));
// Check that it is topologically valid.
for (auto i : best_anc.transactions) {
assert((depgraph.Ancestors(i) & todo).IsSubsetOf(best_anc.transactions));
}
// Compute all remaining ancestor sets.
std::optional<SetInfo<TestBitSet>> real_best_anc;
for (auto i : todo) {
SetInfo info(depgraph, todo & depgraph.Ancestors(i));
if (!real_best_anc.has_value() || info.feerate > real_best_anc->feerate) {
real_best_anc = info;
}
}
// The set returned by anc_finder must equal the real best ancestor sets.
assert(real_best_anc.has_value());
assert(*real_best_anc == best_anc);
// Find a non-empty topologically valid subset of transactions to remove from the graph.
// Using an empty set would mean the next iteration is identical to the current one, and
// could cause an infinite loop.
auto del_set = ReadTopologicalSet(depgraph, todo, reader, /*non_empty=*/true);
todo -= del_set;
anc_finder.MarkDone(del_set);
}
assert(anc_finder.AllDone());
assert(anc_finder.NumRemaining() == 0);
}
static constexpr auto MAX_SIMPLE_ITERATIONS = 300000;
FUZZ_TARGET(clusterlin_simple_finder)
{
// Verify that SimpleCandidateFinder works as expected by sanity checking the results
// and comparing them (if claimed to be optimal) against the sets found by
// ExhaustiveCandidateFinder and AncestorCandidateFinder.
// ExhaustiveCandidateFinder.
//
// Note that SimpleCandidateFinder is only used in tests; the purpose of this fuzz test is to
// establish confidence in SimpleCandidateFinder, so that it can be used to test
// SearchCandidateFinder below.
// establish confidence in SimpleCandidateFinder, so that it can be used in SimpleLinearize,
// which is then used to test Linearize below.
// Retrieve a depgraph from the fuzz input.
SpanReader reader(buffer);
@@ -836,18 +776,15 @@ FUZZ_TARGET(clusterlin_simple_finder)
reader >> Using<DepGraphFormatter>(depgraph);
} catch (const std::ios_base::failure&) {}
// Instantiate the SimpleCandidateFinder to be tested, and the ExhaustiveCandidateFinder and
// AncestorCandidateFinder it is being tested against.
// Instantiate the SimpleCandidateFinder to be tested, and the ExhaustiveCandidateFinder it is
// being tested against.
SimpleCandidateFinder smp_finder(depgraph);
ExhaustiveCandidateFinder exh_finder(depgraph);
AncestorCandidateFinder anc_finder(depgraph);
auto todo = depgraph.Positions();
while (todo.Any()) {
assert(!smp_finder.AllDone());
assert(!exh_finder.AllDone());
assert(!anc_finder.AllDone());
assert(anc_finder.NumRemaining() == todo.Count());
// Call SimpleCandidateFinder.
auto [found, iterations_done] = smp_finder.FindCandidateSet(MAX_SIMPLE_ITERATIONS);
@@ -874,10 +811,6 @@ FUZZ_TARGET(clusterlin_simple_finder)
// Perform further quality checks only if SimpleCandidateFinder claims an optimal result.
if (optimal) {
// Compare with AncestorCandidateFinder.
auto anc = anc_finder.FindCandidateSet();
assert(anc.feerate <= found.feerate);
if (todo.Count() <= 12) {
// Compare with ExhaustiveCandidateFinder. This quickly gets computationally
// expensive for large clusters (O(2^n)), so only do it for sufficiently small ones.
@@ -898,119 +831,10 @@ FUZZ_TARGET(clusterlin_simple_finder)
todo -= del_set;
smp_finder.MarkDone(del_set);
exh_finder.MarkDone(del_set);
anc_finder.MarkDone(del_set);
}
assert(smp_finder.AllDone());
assert(exh_finder.AllDone());
assert(anc_finder.AllDone());
assert(anc_finder.NumRemaining() == 0);
}
FUZZ_TARGET(clusterlin_search_finder)
{
// Verify that SearchCandidateFinder works as expected by sanity checking the results
// and comparing with the results from SimpleCandidateFinder and AncestorCandidateFinder,
// if the result is claimed to be optimal.
// Retrieve an RNG seed, a depgraph, and whether to make it connected, from the fuzz input.
SpanReader reader(buffer);
DepGraph<TestBitSet> depgraph;
uint64_t rng_seed{0};
uint8_t make_connected{1};
try {
reader >> Using<DepGraphFormatter>(depgraph) >> rng_seed >> make_connected;
} catch (const std::ios_base::failure&) {}
// The most complicated graphs are connected ones (other ones just split up). Optionally force
// the graph to be connected.
if (make_connected) MakeConnected(depgraph);
// Instantiate the candidate finders.
SearchCandidateFinder src_finder(depgraph, rng_seed);
SimpleCandidateFinder smp_finder(depgraph);
AncestorCandidateFinder anc_finder(depgraph);
auto todo = depgraph.Positions();
while (todo.Any()) {
assert(!src_finder.AllDone());
assert(!smp_finder.AllDone());
assert(!anc_finder.AllDone());
assert(anc_finder.NumRemaining() == todo.Count());
// For each iteration, read an iteration count limit from the fuzz input.
uint64_t max_iterations = 1;
try {
reader >> VARINT(max_iterations);
} catch (const std::ios_base::failure&) {}
max_iterations &= 0xfffff;
// Read an initial subset from the fuzz input (allowed to be empty).
auto init_set = ReadTopologicalSet(depgraph, todo, reader, /*non_empty=*/false);
SetInfo init_best(depgraph, init_set);
// Call the search finder's FindCandidateSet for what remains of the graph.
auto [found, iterations_done] = src_finder.FindCandidateSet(max_iterations, init_best);
bool optimal = iterations_done < max_iterations;
// Sanity check the result.
assert(iterations_done <= max_iterations);
assert(found.transactions.Any());
assert(found.transactions.IsSubsetOf(todo));
assert(depgraph.FeeRate(found.transactions) == found.feerate);
if (!init_best.feerate.IsEmpty()) assert(found.feerate >= init_best.feerate);
// Check that it is topologically valid.
for (auto i : found.transactions) {
assert(found.transactions.IsSupersetOf(depgraph.Ancestors(i) & todo));
}
// At most 2^(N-1) iterations can be required: the maximum number of non-empty topological
// subsets a (connected) cluster with N transactions can have. Even when the cluster is no
// longer connected after removing certain transactions, this holds, because the connected
// components are searched separately.
assert(iterations_done <= (uint64_t{1} << (todo.Count() - 1)));
// Additionally, test that no more than sqrt(2^N)+1 iterations are required. This is just
// an empirical bound that seems to hold, without proof. Still, add a test for it so we
// can learn about counterexamples if they exist.
if (iterations_done >= 1 && todo.Count() <= 63) {
Assume((iterations_done - 1) * (iterations_done - 1) <= uint64_t{1} << todo.Count());
}
// Perform quality checks only if SearchCandidateFinder claims an optimal result.
if (optimal) {
// Optimal sets are always connected.
assert(depgraph.IsConnected(found.transactions));
// Compare with SimpleCandidateFinder.
auto [simple, simple_iters] = smp_finder.FindCandidateSet(MAX_SIMPLE_ITERATIONS);
assert(found.feerate >= simple.feerate);
if (simple_iters < MAX_SIMPLE_ITERATIONS) {
assert(found.feerate == simple.feerate);
}
// Compare with AncestorCandidateFinder;
auto anc = anc_finder.FindCandidateSet();
assert(found.feerate >= anc.feerate);
// Compare with a non-empty topological set read from the fuzz input (comparing with an
// empty set is not interesting).
auto read_topo = ReadTopologicalSet(depgraph, todo, reader, /*non_empty=*/true);
assert(found.feerate >= depgraph.FeeRate(read_topo));
}
// Find a non-empty topologically valid subset of transactions to remove from the graph.
// Using an empty set would mean the next iteration is identical to the current one, and
// could cause an infinite loop.
auto del_set = ReadTopologicalSet(depgraph, todo, reader, /*non_empty=*/true);
todo -= del_set;
src_finder.MarkDone(del_set);
smp_finder.MarkDone(del_set);
anc_finder.MarkDone(del_set);
}
assert(src_finder.AllDone());
assert(smp_finder.AllDone());
assert(anc_finder.AllDone());
assert(anc_finder.NumRemaining() == 0);
}
FUZZ_TARGET(clusterlin_linearization_chunking)
@@ -1250,6 +1074,10 @@ FUZZ_TARGET(clusterlin_sfl)
}
test_fn(/*is_optimal=*/true);
// Verify that optimality is reached within an expected amount of work. This protects against
// hypothetical bugs that hugely increase the amount of work needed to reach optimality.
assert(sfl.GetCost() <= MaxOptimalLinearizationIters(depgraph.TxCount()));
// The result must be as good as SimpleLinearize.
auto [simple_linearization, simple_optimal] = SimpleLinearize(depgraph, MAX_SIMPLE_ITERATIONS / 10);
auto simple_diagram = ChunkLinearization(depgraph, simple_linearization);
@@ -1301,7 +1129,6 @@ FUZZ_TARGET(clusterlin_linearize)
// Invoke Linearize().
iter_count &= 0x7ffff;
auto [linearization, optimal, cost] = Linearize(depgraph, iter_count, rng_seed, old_linearization);
assert(cost <= iter_count);
SanityCheck(depgraph, linearization);
auto chunking = ChunkLinearization(depgraph, linearization);
@@ -1313,7 +1140,7 @@ FUZZ_TARGET(clusterlin_linearize)
}
// If the iteration count is sufficiently high, an optimal linearization must be found.
if (iter_count >= MaxOptimalLinearizationIters(depgraph.TxCount())) {
if (iter_count > MaxOptimalLinearizationIters(depgraph.TxCount())) {
assert(optimal);
}
@@ -1328,9 +1155,13 @@ FUZZ_TARGET(clusterlin_linearize)
// If SimpleLinearize finds the optimal result too, they must be equal (if not,
// SimpleLinearize is broken).
if (simple_optimal) assert(cmp == 0);
// If simple_chunking is diagram-optimal, it cannot have more chunks than chunking (as
// chunking is claimed to be optimal, which implies minimal chunks).
if (cmp == 0) assert(chunking.size() >= simple_chunking.size());
// Temporarily disabled, as Linearize() currently does not guarantee minimal chunks, even
// when it reports an optimal result. This will be re-introduced in a later commit.
//
// // If simple_chunking is diagram-optimal, it cannot have more chunks than chunking (as
// // chunking is claimed to be optimal, which implies minimal chunks).
// if (cmp == 0) assert(chunking.size() >= simple_chunking.size());
// Compare with a linearization read from the fuzz input.
auto read = ReadLinearization(depgraph, reader);

View File

@@ -396,25 +396,24 @@ void SanityCheck(const DepGraph<SetType>& depgraph, std::span<const DepGraphInde
inline uint64_t MaxOptimalLinearizationIters(DepGraphIndex cluster_count)
{
// We assume sqrt(2^k)+1 candidate-finding iterations per candidate to be found, plus ceil(k/4)
// startup cost when up to k unlinearization transactions remain, plus ceil(n^2/64) overall
// startup cost in Linearize. Thus, we can compute the upper bound for a whole linearization
// (summing for k=1..n) using the Python expression:
//
// [sum((k+3)//4 + math.isqrt(2**k) + 1 for k in range(1, n + 1)) + (n**2 + 63) // 64 for n in range(0, 65)]
//
// Note that these are just assumptions, as the proven upper bound grows with 2^k, not
// sqrt(2^k).
static constexpr uint64_t MAX_OPTIMAL_ITERS[65] = {
0, 4, 8, 12, 18, 26, 37, 51, 70, 97, 133, 182, 251, 346, 480, 666, 927, 1296, 1815, 2545,
3576, 5031, 7087, 9991, 14094, 19895, 28096, 39690, 56083, 79263, 112041, 158391, 223936,
316629, 447712, 633086, 895241, 1265980, 1790280, 2531747, 3580335, 5063259, 7160424,
10126257, 14320575, 20252230, 28640853, 40504150, 57281380, 81007962, 114562410, 162015557,
229124437, 324030718, 458248463, 648061011, 916496483, 1296121563, 1832992493, 2592242635,
3665984477, 5184484745, 7331968412, 10368968930, 14663936244
// These are the largest numbers seen returned as cost by Linearize(), in a large randomized
// trial. There exist almost certainly far worse cases, but they are unlikely to be
// encountered in randomized tests. The purpose of these numbers is guaranteeing that for
// *some* reasonable cost bound, optimal linearizations are always found.
static constexpr uint64_t ITERS[65] = {
0,
0, 2, 8, 21, 51, 99, 162, 208,
300, 349, 489, 627, 776, 867, 982, 1204,
1414, 1473, 1770, 2045, 2391, 2417, 3669, 3953,
3816, 5717, 4096, 5933, 5225, 5684, 6205, 6407,
7671, 12044, 11799, 9577, 9631, 10819, 12277, 15250,
18609, 14439, 22283, 16461, 22887, 20641, 22009, 22053,
27068, 22173, 31066, 30848, 31841, 37174, 39701, 35666,
42728, 43679, 45719, 40217, 51395, 57796, 72739, 60079
};
assert(cluster_count < sizeof(MAX_OPTIMAL_ITERS) / sizeof(MAX_OPTIMAL_ITERS[0]));
return MAX_OPTIMAL_ITERS[cluster_count];
assert(cluster_count < std::size(ITERS));
// Multiply the table number by two, to account for the fact that they are not absolutes.
return ITERS[cluster_count] * 2;
}
} // namespace

View File

@@ -2091,9 +2091,9 @@ std::pair<uint64_t, bool> GenericClusterImpl::Relinearize(TxGraphImpl& graph, in
// Invoke the actual linearization algorithm (passing in the existing one).
uint64_t rng_seed = graph.m_rng.rand64();
auto [linearization, optimal, cost] = Linearize(m_depgraph, max_iters, rng_seed, m_linearization);
// Postlinearize if the result isn't optimal already. This guarantees (among other things)
// that the chunks of the resulting linearization are all connected.
if (!optimal) PostLinearize(m_depgraph, linearization);
// Postlinearize to guarantee that the chunks of the resulting linearization are all connected.
// (SFL currently does not guarantee connected chunks even when optimal).
PostLinearize(m_depgraph, linearization);
// Update the linearization.
m_linearization = std::move(linearization);
// Update the Cluster's quality.

View File

@@ -239,8 +239,9 @@ class MempoolPackagesTest(BitcoinTestFramework):
self.generate(self.nodes[0], 1)
self.trigger_reorg(fork_blocks, self.nodes[0])
# Check if the txs are returned to the mempool
assert_equal(self.nodes[0].getrawmempool(), mempool0)
# Check if the txs are returned to the mempool (though the transaction ordering may
# change as it is non-deterministic).
assert_equal(set(self.nodes[0].getrawmempool()), set(mempool0))
# Clean-up the mempool
self.generate(self.nodes[0], 1)