test: speed up and simplify peer_eviction_test

This speeds up the test significantly, which helps when
running it repeatedly.

Suggest reviewing the diff with:

colorMoved = dimmed-zebra
colorMovedWs = allow-indentation-change
This commit is contained in:
Jon Atack 2021-04-19 15:08:25 +02:00
parent 1cde800523
commit 519e76bb64
No known key found for this signature in database
GPG Key ID: 4F5721B3D0E3921D

View File

@ -15,11 +15,6 @@
BOOST_FIXTURE_TEST_SUITE(net_peer_eviction_tests, BasicTestingSetup)
namespace {
constexpr int NODE_EVICTION_TEST_ROUNDS{10};
constexpr int NODE_EVICTION_TEST_UP_TO_N_NODES{200};
} // namespace
std::vector<NodeEvictionCandidate> GetRandomNodeEvictionCandidates(const int n_candidates, FastRandomContext& random_context)
{
std::vector<NodeEvictionCandidate> candidates;
@ -257,91 +252,89 @@ BOOST_AUTO_TEST_CASE(peer_eviction_test)
{
FastRandomContext random_context{true};
for (int i = 0; i < NODE_EVICTION_TEST_ROUNDS; ++i) {
for (int number_of_nodes = 0; number_of_nodes < NODE_EVICTION_TEST_UP_TO_N_NODES; ++number_of_nodes) {
// Four nodes with the highest keyed netgroup values should be
// protected from eviction.
BOOST_CHECK(!IsEvicted(
number_of_nodes, [number_of_nodes](NodeEvictionCandidate& candidate) {
candidate.nKeyedNetGroup = number_of_nodes - candidate.id;
},
{0, 1, 2, 3}, random_context));
for (int number_of_nodes = 0; number_of_nodes < 200; ++number_of_nodes) {
// Four nodes with the highest keyed netgroup values should be
// protected from eviction.
BOOST_CHECK(!IsEvicted(
number_of_nodes, [number_of_nodes](NodeEvictionCandidate& candidate) {
candidate.nKeyedNetGroup = number_of_nodes - candidate.id;
},
{0, 1, 2, 3}, random_context));
// Eight nodes with the lowest minimum ping time should be protected
// from eviction.
BOOST_CHECK(!IsEvicted(
number_of_nodes, [](NodeEvictionCandidate& candidate) {
candidate.m_min_ping_time = std::chrono::microseconds{candidate.id};
},
{0, 1, 2, 3, 4, 5, 6, 7}, random_context));
// Eight nodes with the lowest minimum ping time should be protected
// from eviction.
BOOST_CHECK(!IsEvicted(
number_of_nodes, [](NodeEvictionCandidate& candidate) {
candidate.m_min_ping_time = std::chrono::microseconds{candidate.id};
},
{0, 1, 2, 3, 4, 5, 6, 7}, random_context));
// Four nodes that most recently sent us novel transactions accepted
// into our mempool should be protected from eviction.
BOOST_CHECK(!IsEvicted(
number_of_nodes, [number_of_nodes](NodeEvictionCandidate& candidate) {
candidate.nLastTXTime = number_of_nodes - candidate.id;
},
{0, 1, 2, 3}, random_context));
// Four nodes that most recently sent us novel transactions accepted
// into our mempool should be protected from eviction.
BOOST_CHECK(!IsEvicted(
number_of_nodes, [number_of_nodes](NodeEvictionCandidate& candidate) {
candidate.nLastTXTime = number_of_nodes - candidate.id;
},
{0, 1, 2, 3}, random_context));
// Up to eight non-tx-relay peers that most recently sent us novel
// blocks should be protected from eviction.
BOOST_CHECK(!IsEvicted(
number_of_nodes, [number_of_nodes](NodeEvictionCandidate& candidate) {
candidate.nLastBlockTime = number_of_nodes - candidate.id;
if (candidate.id <= 7) {
candidate.fRelayTxes = false;
candidate.fRelevantServices = true;
}
},
{0, 1, 2, 3, 4, 5, 6, 7}, random_context));
// Up to eight non-tx-relay peers that most recently sent us novel
// blocks should be protected from eviction.
BOOST_CHECK(!IsEvicted(
number_of_nodes, [number_of_nodes](NodeEvictionCandidate& candidate) {
candidate.nLastBlockTime = number_of_nodes - candidate.id;
if (candidate.id <= 7) {
candidate.fRelayTxes = false;
candidate.fRelevantServices = true;
}
},
{0, 1, 2, 3, 4, 5, 6, 7}, random_context));
// Four peers that most recently sent us novel blocks should be
// protected from eviction.
BOOST_CHECK(!IsEvicted(
number_of_nodes, [number_of_nodes](NodeEvictionCandidate& candidate) {
candidate.nLastBlockTime = number_of_nodes - candidate.id;
},
{0, 1, 2, 3}, random_context));
// Four peers that most recently sent us novel blocks should be
// protected from eviction.
BOOST_CHECK(!IsEvicted(
number_of_nodes, [number_of_nodes](NodeEvictionCandidate& candidate) {
candidate.nLastBlockTime = number_of_nodes - candidate.id;
},
{0, 1, 2, 3}, random_context));
// Combination of the previous two tests.
BOOST_CHECK(!IsEvicted(
number_of_nodes, [number_of_nodes](NodeEvictionCandidate& candidate) {
candidate.nLastBlockTime = number_of_nodes - candidate.id;
if (candidate.id <= 7) {
candidate.fRelayTxes = false;
candidate.fRelevantServices = true;
}
},
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, random_context));
// Combination of the previous two tests.
BOOST_CHECK(!IsEvicted(
number_of_nodes, [number_of_nodes](NodeEvictionCandidate& candidate) {
candidate.nLastBlockTime = number_of_nodes - candidate.id;
if (candidate.id <= 7) {
candidate.fRelayTxes = false;
candidate.fRelevantServices = true;
}
},
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, random_context));
// Combination of all tests above.
BOOST_CHECK(!IsEvicted(
number_of_nodes, [number_of_nodes](NodeEvictionCandidate& candidate) {
candidate.nKeyedNetGroup = number_of_nodes - candidate.id; // 4 protected
candidate.m_min_ping_time = std::chrono::microseconds{candidate.id}; // 8 protected
candidate.nLastTXTime = number_of_nodes - candidate.id; // 4 protected
candidate.nLastBlockTime = number_of_nodes - candidate.id; // 4 protected
},
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19}, random_context));
// Combination of all tests above.
BOOST_CHECK(!IsEvicted(
number_of_nodes, [number_of_nodes](NodeEvictionCandidate& candidate) {
candidate.nKeyedNetGroup = number_of_nodes - candidate.id; // 4 protected
candidate.m_min_ping_time = std::chrono::microseconds{candidate.id}; // 8 protected
candidate.nLastTXTime = number_of_nodes - candidate.id; // 4 protected
candidate.nLastBlockTime = number_of_nodes - candidate.id; // 4 protected
},
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19}, random_context));
// An eviction is expected given >= 29 random eviction candidates. The eviction logic protects at most
// four peers by net group, eight by lowest ping time, four by last time of novel tx, up to eight non-tx-relay
// peers by last novel block time, and four more peers by last novel block time.
if (number_of_nodes >= 29) {
BOOST_CHECK(SelectNodeToEvict(GetRandomNodeEvictionCandidates(number_of_nodes, random_context)));
}
// No eviction is expected given <= 20 random eviction candidates. The eviction logic protects at least
// four peers by net group, eight by lowest ping time, four by last time of novel tx and four peers by last
// novel block time.
if (number_of_nodes <= 20) {
BOOST_CHECK(!SelectNodeToEvict(GetRandomNodeEvictionCandidates(number_of_nodes, random_context)));
}
// Cases left to test:
// * "If any remaining peers are preferred for eviction consider only them. [...]"
// * "Identify the network group with the most connections and youngest member. [...]"
// An eviction is expected given >= 29 random eviction candidates. The eviction logic protects at most
// four peers by net group, eight by lowest ping time, four by last time of novel tx, up to eight non-tx-relay
// peers by last novel block time, and four more peers by last novel block time.
if (number_of_nodes >= 29) {
BOOST_CHECK(SelectNodeToEvict(GetRandomNodeEvictionCandidates(number_of_nodes, random_context)));
}
// No eviction is expected given <= 20 random eviction candidates. The eviction logic protects at least
// four peers by net group, eight by lowest ping time, four by last time of novel tx and four peers by last
// novel block time.
if (number_of_nodes <= 20) {
BOOST_CHECK(!SelectNodeToEvict(GetRandomNodeEvictionCandidates(number_of_nodes, random_context)));
}
// Cases left to test:
// * "If any remaining peers are preferred for eviction consider only them. [...]"
// * "Identify the network group with the most connections and youngest member. [...]"
}
}