txgraph: check that DoWork finds optimal if given high budget (tests)

This commit is contained in:
Pieter Wuille
2025-07-13 13:32:35 -04:00
parent f3c2fc867f
commit 62ed1f92ef
3 changed files with 55 additions and 24 deletions

View File

@@ -1167,24 +1167,9 @@ FUZZ_TARGET(clusterlin_linearize)
}
// If the iteration count is sufficiently high, an optimal linearization must be found.
// Each linearization step can use up to 2^(k-1) iterations, with steps k=1..n. That sum is
// 2^n - 1.
const uint64_t n = depgraph.TxCount();
if (n <= 19 && iter_count > (uint64_t{1} << n)) {
if (iter_count >= MaxOptimalLinearizationIters(depgraph.TxCount())) {
assert(optimal);
}
// Additionally, if the assumption of sqrt(2^k)+1 iterations per step holds, plus ceil(k/4)
// start-up cost per step, plus ceil(n^2/64) start-up cost overall, we can compute the upper
// bound for a whole linearization (summing for k=1..n) using the Python expression
// [sum((k+3)//4 + int(math.sqrt(2**k)) + 1 for k in range(1, n + 1)) + (n**2 + 63) // 64 for n in range(0, 35)]:
static constexpr uint64_t MAX_OPTIMAL_ITERS[] = {
0, 4, 8, 12, 18, 26, 37, 51, 70, 97, 133, 182, 251, 346, 480, 666, 927, 1296, 1815, 2545,
3576, 5031, 7087, 9991, 14094, 19895, 28096, 39690, 56083, 79263, 112041, 158391, 223936,
316629, 447712
};
if (n < std::size(MAX_OPTIMAL_ITERS) && iter_count >= MAX_OPTIMAL_ITERS[n]) {
Assume(optimal);
}
// If Linearize claims optimal result, run quality tests.
if (optimal) {

View File

@@ -5,6 +5,7 @@
#include <cluster_linearize.h>
#include <test/fuzz/FuzzedDataProvider.h>
#include <test/fuzz/fuzz.h>
#include <test/util/cluster_linearize.h>
#include <test/util/random.h>
#include <txgraph.h>
#include <util/bitset.h>
@@ -730,16 +731,38 @@ FUZZ_TARGET(txgraph)
} else if (command-- == 0) {
// DoWork.
uint64_t iters = provider.ConsumeIntegralInRange<uint64_t>(0, alt ? 10000 : 255);
if (real->DoWork(iters)) {
for (unsigned level = 0; level < sims.size(); ++level) {
// DoWork() will not optimize oversized levels.
if (sims[level].IsOversized()) continue;
// DoWork() will not touch the main level if a builder is present.
if (level == 0 && !block_builders.empty()) continue;
// If neither of the two above conditions holds, and DoWork() returned
// then the level is optimal.
bool ret = real->DoWork(iters);
uint64_t iters_for_optimal{0};
for (unsigned level = 0; level < sims.size(); ++level) {
// DoWork() will not optimize oversized levels, or the main level if a builder
// is present. Note that this impacts the DoWork() return value, as true means
// that non-optimal clusters may remain within such oversized or builder-having
// levels.
if (sims[level].IsOversized()) continue;
if (level == 0 && !block_builders.empty()) continue;
// If neither of the two above conditions holds, and DoWork() returned true,
// then the level is optimal.
if (ret) {
sims[level].real_is_optimal = true;
}
// Compute how many iterations would be needed to make everything optimal.
for (auto component : sims[level].GetComponents()) {
auto iters_opt_this_cluster = MaxOptimalLinearizationIters(component.Count());
if (iters_opt_this_cluster > acceptable_iters) {
// If the number of iterations required to linearize this cluster
// optimally exceeds acceptable_iters, DoWork() may process it in two
// stages: once to acceptable, and once to optimal.
iters_for_optimal += iters_opt_this_cluster + acceptable_iters;
} else {
iters_for_optimal += iters_opt_this_cluster;
}
}
}
if (!ret) {
// DoWork can only have more work left if the requested number of iterations
// was insufficient to linearize everything optimally within the levels it is
// allowed to touch.
assert(iters <= iters_for_optimal);
}
break;
} else if (sims.size() == 2 && !sims[0].IsOversized() && !sims[1].IsOversized() && command-- == 0) {

View File

@@ -394,6 +394,29 @@ void SanityCheck(const DepGraph<SetType>& depgraph, std::span<const DepGraphInde
}
}
inline uint64_t MaxOptimalLinearizationIters(DepGraphIndex cluster_count)
{
// We assume sqrt(2^k)+1 candidate-finding iterations per candidate to be found, plus ceil(k/4)
// startup cost when up to k unlinearization transactions remain, plus ceil(n^2/64) overall
// startup cost in Linearize. Thus, we can compute the upper bound for a whole linearization
// (summing for k=1..n) using the Python expression:
//
// [sum((k+3)//4 + math.isqrt(2**k) + 1 for k in range(1, n + 1)) + (n**2 + 63) // 64 for n in range(0, 65)]
//
// Note that these are just assumptions, as the proven upper bound grows with 2^k, not
// sqrt(2^k).
static constexpr uint64_t MAX_OPTIMAL_ITERS[65] = {
0, 4, 8, 12, 18, 26, 37, 51, 70, 97, 133, 182, 251, 346, 480, 666, 927, 1296, 1815, 2545,
3576, 5031, 7087, 9991, 14094, 19895, 28096, 39690, 56083, 79263, 112041, 158391, 223936,
316629, 447712, 633086, 895241, 1265980, 1790280, 2531747, 3580335, 5063259, 7160424,
10126257, 14320575, 20252230, 28640853, 40504150, 57281380, 81007962, 114562410, 162015557,
229124437, 324030718, 458248463, 648061011, 916496483, 1296121563, 1832992493, 2592242635,
3665984477, 5184484745, 7331968412, 10368968930, 14663936244
};
assert(cluster_count < sizeof(MAX_OPTIMAL_ITERS) / sizeof(MAX_OPTIMAL_ITERS[0]));
return MAX_OPTIMAL_ITERS[cluster_count];
}
} // namespace
#endif // BITCOIN_TEST_UTIL_CLUSTER_LINEARIZE_H