mirror of
https://github.com/bitcoin/bitcoin.git
synced 2026-01-19 14:53:43 +01:00
txgraph: check that DoWork finds optimal if given high budget (tests)
This commit is contained in:
@@ -1167,24 +1167,9 @@ FUZZ_TARGET(clusterlin_linearize)
|
||||
}
|
||||
|
||||
// If the iteration count is sufficiently high, an optimal linearization must be found.
|
||||
// Each linearization step can use up to 2^(k-1) iterations, with steps k=1..n. That sum is
|
||||
// 2^n - 1.
|
||||
const uint64_t n = depgraph.TxCount();
|
||||
if (n <= 19 && iter_count > (uint64_t{1} << n)) {
|
||||
if (iter_count >= MaxOptimalLinearizationIters(depgraph.TxCount())) {
|
||||
assert(optimal);
|
||||
}
|
||||
// Additionally, if the assumption of sqrt(2^k)+1 iterations per step holds, plus ceil(k/4)
|
||||
// start-up cost per step, plus ceil(n^2/64) start-up cost overall, we can compute the upper
|
||||
// bound for a whole linearization (summing for k=1..n) using the Python expression
|
||||
// [sum((k+3)//4 + int(math.sqrt(2**k)) + 1 for k in range(1, n + 1)) + (n**2 + 63) // 64 for n in range(0, 35)]:
|
||||
static constexpr uint64_t MAX_OPTIMAL_ITERS[] = {
|
||||
0, 4, 8, 12, 18, 26, 37, 51, 70, 97, 133, 182, 251, 346, 480, 666, 927, 1296, 1815, 2545,
|
||||
3576, 5031, 7087, 9991, 14094, 19895, 28096, 39690, 56083, 79263, 112041, 158391, 223936,
|
||||
316629, 447712
|
||||
};
|
||||
if (n < std::size(MAX_OPTIMAL_ITERS) && iter_count >= MAX_OPTIMAL_ITERS[n]) {
|
||||
Assume(optimal);
|
||||
}
|
||||
|
||||
// If Linearize claims optimal result, run quality tests.
|
||||
if (optimal) {
|
||||
|
||||
@@ -5,6 +5,7 @@
|
||||
#include <cluster_linearize.h>
|
||||
#include <test/fuzz/FuzzedDataProvider.h>
|
||||
#include <test/fuzz/fuzz.h>
|
||||
#include <test/util/cluster_linearize.h>
|
||||
#include <test/util/random.h>
|
||||
#include <txgraph.h>
|
||||
#include <util/bitset.h>
|
||||
@@ -730,16 +731,38 @@ FUZZ_TARGET(txgraph)
|
||||
} else if (command-- == 0) {
|
||||
// DoWork.
|
||||
uint64_t iters = provider.ConsumeIntegralInRange<uint64_t>(0, alt ? 10000 : 255);
|
||||
if (real->DoWork(iters)) {
|
||||
for (unsigned level = 0; level < sims.size(); ++level) {
|
||||
// DoWork() will not optimize oversized levels.
|
||||
if (sims[level].IsOversized()) continue;
|
||||
// DoWork() will not touch the main level if a builder is present.
|
||||
if (level == 0 && !block_builders.empty()) continue;
|
||||
// If neither of the two above conditions holds, and DoWork() returned
|
||||
// then the level is optimal.
|
||||
bool ret = real->DoWork(iters);
|
||||
uint64_t iters_for_optimal{0};
|
||||
for (unsigned level = 0; level < sims.size(); ++level) {
|
||||
// DoWork() will not optimize oversized levels, or the main level if a builder
|
||||
// is present. Note that this impacts the DoWork() return value, as true means
|
||||
// that non-optimal clusters may remain within such oversized or builder-having
|
||||
// levels.
|
||||
if (sims[level].IsOversized()) continue;
|
||||
if (level == 0 && !block_builders.empty()) continue;
|
||||
// If neither of the two above conditions holds, and DoWork() returned true,
|
||||
// then the level is optimal.
|
||||
if (ret) {
|
||||
sims[level].real_is_optimal = true;
|
||||
}
|
||||
// Compute how many iterations would be needed to make everything optimal.
|
||||
for (auto component : sims[level].GetComponents()) {
|
||||
auto iters_opt_this_cluster = MaxOptimalLinearizationIters(component.Count());
|
||||
if (iters_opt_this_cluster > acceptable_iters) {
|
||||
// If the number of iterations required to linearize this cluster
|
||||
// optimally exceeds acceptable_iters, DoWork() may process it in two
|
||||
// stages: once to acceptable, and once to optimal.
|
||||
iters_for_optimal += iters_opt_this_cluster + acceptable_iters;
|
||||
} else {
|
||||
iters_for_optimal += iters_opt_this_cluster;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!ret) {
|
||||
// DoWork can only have more work left if the requested number of iterations
|
||||
// was insufficient to linearize everything optimally within the levels it is
|
||||
// allowed to touch.
|
||||
assert(iters <= iters_for_optimal);
|
||||
}
|
||||
break;
|
||||
} else if (sims.size() == 2 && !sims[0].IsOversized() && !sims[1].IsOversized() && command-- == 0) {
|
||||
|
||||
@@ -394,6 +394,29 @@ void SanityCheck(const DepGraph<SetType>& depgraph, std::span<const DepGraphInde
|
||||
}
|
||||
}
|
||||
|
||||
inline uint64_t MaxOptimalLinearizationIters(DepGraphIndex cluster_count)
|
||||
{
|
||||
// We assume sqrt(2^k)+1 candidate-finding iterations per candidate to be found, plus ceil(k/4)
|
||||
// startup cost when up to k unlinearization transactions remain, plus ceil(n^2/64) overall
|
||||
// startup cost in Linearize. Thus, we can compute the upper bound for a whole linearization
|
||||
// (summing for k=1..n) using the Python expression:
|
||||
//
|
||||
// [sum((k+3)//4 + math.isqrt(2**k) + 1 for k in range(1, n + 1)) + (n**2 + 63) // 64 for n in range(0, 65)]
|
||||
//
|
||||
// Note that these are just assumptions, as the proven upper bound grows with 2^k, not
|
||||
// sqrt(2^k).
|
||||
static constexpr uint64_t MAX_OPTIMAL_ITERS[65] = {
|
||||
0, 4, 8, 12, 18, 26, 37, 51, 70, 97, 133, 182, 251, 346, 480, 666, 927, 1296, 1815, 2545,
|
||||
3576, 5031, 7087, 9991, 14094, 19895, 28096, 39690, 56083, 79263, 112041, 158391, 223936,
|
||||
316629, 447712, 633086, 895241, 1265980, 1790280, 2531747, 3580335, 5063259, 7160424,
|
||||
10126257, 14320575, 20252230, 28640853, 40504150, 57281380, 81007962, 114562410, 162015557,
|
||||
229124437, 324030718, 458248463, 648061011, 916496483, 1296121563, 1832992493, 2592242635,
|
||||
3665984477, 5184484745, 7331968412, 10368968930, 14663936244
|
||||
};
|
||||
assert(cluster_count < sizeof(MAX_OPTIMAL_ITERS) / sizeof(MAX_OPTIMAL_ITERS[0]));
|
||||
return MAX_OPTIMAL_ITERS[cluster_count];
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
#endif // BITCOIN_TEST_UTIL_CLUSTER_LINEARIZE_H
|
||||
|
||||
Reference in New Issue
Block a user