In the `txgraph` fuzz test, the `CommitStaging` step updates the
`SimTxGraph` levels simply by erasing the front (=main) one in the
`sims` vector, i.e. the staging level instance takes the place of the
main level instance. This also includes the `real_is_optimal` flag
(reflecting whether the corresponding real graph is known to be
optimally linearized), without taking into account that this flag
should only be set if _both_ levels before the commiting are optimal.
E.g. in case of #33097, the main level is not optimally linearized,
while the staging level is, and due to the incorrect propagation of the
latter to the simulation incorrectly assumes that the main level is
optimal, leading to the assertion fail. Fix this by setting the flag
in the resulting main level explicitly.
Resolves the fuzzing assertion fail in issue #33097.
This adds an `iters` parameter to DoWork(), which controls how much work it is
allowed to do right now.
Additionally, DoWork() won't stop at just getting everything ACCEPTABLE, but if
there is work budget left, will also attempt to get every cluster linearized
optimally.
Trim internally builds an approximate dependency graph of the merged cluster,
replacing all existing dependencies within existing clusters with a simple
linear chain of dependencies. This helps keep the complexity of the merging
operation down, but may result in cycles to appear in the general case, even
though in real scenarios (where Trim is called for stitching re-added mempool
transactions after a reorg back to the existing mempool transactions) such
cycles are not possible.
Add a test that specifically targets Trim() but in scenarios where it is
guaranteed not to have any cycles. It is a special case, is much more a
whitebox test than a blackbox test, and relies on randomness rather than
fuzz input. The upside is that somewhat stronger properties can be tested.
Co-authored-by: Greg Sanders <gsanders87@gmail.com>
During reorganisations, it is possible that dependencies get add which
result in clusters that violate limits (count, size), when linking the
new from-block transactions to the old from-mempool transactions.
Unlike RBF scenarios, we cannot simply reject these policy violations
when they are due to received blocks. To accomodate this, add a Trim()
function to TxGraph, which removes transactions (including descendants)
in order to make all resulting clusters satisfy the limits.
In the initial version of the function added here, the following approach
is used:
- Lazily compute a naive linearization for the to-be-merged cluster (using
an O(n log n) algorithm, optimized for far larger groups of transactions
than the normal linearization code).
- Initialize a set of accepted transactions to {}
- Iterate over the transactions in this cluster one by one:
- If adding the transaction to the set makes it exceed the max cluster size
or count limit, stop.
- Add the transaction to the set.
- Remove all transactions from the cluster that were not included in the set
(note that this necessarily includes all descendants too, because they
appear later in the naive linearization).
Co-authored-by: Greg Sanders <gsanders87@gmail.com>
This removes the restriction added in the previous commit that individual
transactions do not exceed the max cluster size limit.
With this change, the responsibility for enforcing cluster size limits can
be localized purely in TxGraph, without callers (and in particular, tests)
needing to duplicate the enforcement for individual transactions.
This is integrated with the oversized property: the graph is oversized when
any connected component within it contains more than the cluster count limit
many transactions, or when their combined size/weight exceeds the cluster size
limit.
It becomes disallowed to call AddTransaction with a size larger than this limit,
though this limit will be lifted in the next commit.
In addition, SetTransactionFeeRate becomes SetTransactionFee, so that we do not
need to deal with the case that a call to this function might affect the
oversizedness.
This can be reproduced according to the developer notes with something
like
( cd ./src/ && ../contrib/devtools/run-clang-tidy.py -p ../bld-cmake -fix -j $(nproc) )
Also, the header related changes were done manually.
This interface lets one iterate efficiently over the chunks of the main
graph in a TxGraph, in the same order as CompareMainOrder. Each chunk
can be marked as "included" or "skipped" (and in the latter case,
dependent chunks will be skipped).
This abstracts out the finding of the connected component that includes
a given element from FindConnectedComponent (which just finds any connected
component).
Use this in the txgraph fuzz test, which was effectively reimplementing this
logic. At the same time, improve its performance by replacing a vector with a
set.
In order to make it possible for higher layers to compare transaction quality
(ordering within the implicit total ordering on the mempool), expose a comparison
function and test it.
Before this commit, if a TxGraph::Ref object is destroyed, it becomes impossible
to refer to, but the actual corresponding transaction node in the TxGraph remains,
and remains indefinitely as there is no way to remove it.
Fix this by making the destruction of TxGraph::Ref trigger immediate removal of
the corresponding transaction in TxGraph, both in main and staging if it exists.
In order to make it easy to evaluate proposed changes to a TxGraph, introduce a
"staging" mode, where mutators (AddTransaction, AddDependency, RemoveTransaction)
do not modify the actual graph, but just a staging version of it. That staging
graph can then be commited (replacing the main one with it), or aborted (discarding
the staging).
Instead of leaving the responsibility on higher layers to guarantee that
no connected component within TxGraph (a barely exposed concept, except through
GetCluster()) exceeds the cluster count limit, move this responsibility to
TxGraph itself:
* TxGraph retains a cluster count limit, but it becomes configurable at construction
time (this primarily helps with testing that it is properly enforced).
* It is always allowed to perform mutators on TxGraph, even if they would cause the
cluster count limit to be exceeded. Instead, TxGraph exposes an IsOversized()
function, which queries whether it is in a special "oversize" state.
* During oversize state, many inspectors are unavailable, but mutators remain valid,
so the higher layer can "fix" the oversize state before continuing.
To make testing more powerful, expose a function to perform an internal sanity
check on the state of a TxGraph. This is especially important as TxGraphImpl
contains many redundantly represented pieces of information:
* graph contains clusters, which refer to entries, but the entries refer back
* graph maintains pointers to Ref objects, which point back to the graph.
This lets us make sure they are always in sync.
This adds a simulation fuzz test for txgraph, by comparing with a naive
reimplementation that models the entire graph as a single DepGraph, and
clusters in TxGraph as connected components within that DepGraph.