Since the minimum signed integer cannot be represented as positive so long as its type is signed, and it's not well-defined what happens if you make it unsigned before negating it, we instead increment the negative integer by 1, convert it, then increment the (now positive) unsigned integer by 1 to compensate
As noticed by sipa (Pieter Wuille), this can happen when CBigNum::setint64() is
called with an integer value of INT64_MIN (-2^63).
When compiled with -ftrapv, the program would crash. Otherwise, it would
execute an undefined operation (although in practice, usually the correct one).
Bitcoin will not make an outbound connection to a network group
(/16 for IPv4) that it is already connected to. This means that
if an attacker wants good odds of capturing all a nodes outbound
connections he must have hosts on a a large number of distinct
groups.
Previously both inbound and outbound connections were used to
feed this exclusion. The use of inbound connections, which can be
controlled by the attacker, actually has the potential of making
sibyl attacks _easier_: An attacker can start up hosts in groups
which house many honest nodes and make outbound connections to
the victim to exclude big swaths of honest nodes. Because the
attacker chooses to make the outbound connection he can always
beat out honest nodes for the consumption of inbound slots.
At _best_ the old behavior increases attacker costs by a single
group (e.g. one distinct group to use to fill up all your inbound
slots), but at worst it allows the attacker to select whole
networks you won't connect to.
This commit makes the nodes use only outbound links to exclude
network groups for outbound connections. Fancier things could
be done, like weaker exclusion for inbound groups... but
simplicity is good and I don't believe more complexity is
currently needed.
Remove orphan transactions from memory once
all of their parent transactions are received
and they're still not valid.
Thanks to Sergio Demian Lerner for suggesting this fix.
Loop over all inputs doing inexpensive validity checks first,
and then loop over them a second time doing expensive signature
checks. This helps prevent possible CPU exhaustion attacks
where an attacker tries to make a victim waste time checking
signatures for invalid transactions.
CBigNum::setint64() does 'n <<= 8', where n is of type "long long".
This leads to shifting onto and past the sign bit, which is undefined
behavior in C++11 and can cause problems in the future.
Acquire an exclusive, advisory lock before sending output to debug.log
and release it when we're done. This should avoid output from multiple
threads being interspersed in the log file.
We can't use CRITICAL_SECTION machinery for this because the debug log
is written during startup and shutdown when that machinery is not
available.
(Thanks to Gavin for pointing out the CRITICAL_SECTION problems based
on his earlier work in this area)
Any problems seen during deserialization will throw an uncaught
exception, crashing the entire bitcoin process. Properly return an
error instead, so that we may at least log the error and gracefully
shutdown other portions of the app.
Immediately issue a "getblocks", instead of a "getdata" (which will
trigger the relevant "inv" to be sent anyway), and only do so when
the previous set of invs led us into a known and attached part of
the block tree.
Pull request #948 introduced a fix for nodes stuck on a long side branch
of the main chain. The fix was non-functional however, as the additional
getdata request was created in a first step of processing, but dropped
in a second step as it was considered redundant. This commits fixes it
by sending the request directly.
In cases of very large reorganisations (hundreds of blocks), a situation
may appear where an 'inv' is sent as response to a 'getblocks', but the
last block mentioned in the inv is already known to the receiver node.
However, the supplying node uses a request for this last block as a
trigger to send the rest of the inv blocks. If it never comes, the block
chain download is stuck.
This commit makes the receiver node always request the last inv'ed block,
even if it is already known, to prevent this problem.
Rather than storing ftell(3)'s return value -- a long -- in an
unsigned int, we store and check a properly typed temp. Then, assured a
non-negative value, we store in nBlockPosRet.
In ISO C++, the signedness of 'char' is undefined. On some platforms (e.g.
ARM), 'char' is an unsigned type, but some of the code relies on 'char' being
signed (as it is on x86). This is indicated by compiler warnings like this:
bignum.h: In constructor 'CBigNum::CBigNum(char)':
bignum.h:81:59: warning: comparison is always true due to limited range of data type [-Wtype-limits]
util.cpp: In function 'bool IsHex(const string&)':
util.cpp:427:28: warning: comparison is always false due to limited range of data type [-Wtype-limits]
In particular, IsHex erroneously returned true regardless of the input
characters, as long as the length of the string was a positive multiple of 2.
Note: For testing, it's possible using GCC to force char to be unsigned by
adding the -funsigned-char parameter to xCXXFLAGS.
Conflict:
* cs_main in ProcessMessages() (before calling ProcessMessages)
* cs_vSend in CNode::BeginMessage
versus:
* cs_vSend in ThreadMessageHandler2 (before calling SendMessages)
* cs_main in SendMessages
Even though cs_vSend is a try_lock, if it succeeds simultaneously with
the locking of cs_main in ProcessMessages(), it could cause a deadlock.