laanwj 267917f563
Merge bitcoin/bitcoin#23304: wallet: Derive inactive HD chains in additional places
c4d76c6faa3adf06f192649e169ca860ce420d30 tests: Tests for inactive HD chains (Andrew Chow)
8077862c5e8a3ed501f0baabc33536eb16922ceb wallet: Refactor TopUp to be able to top up inactive chains too (Andrew Chow)
70134eb34f58f0c572e7c3775e292d408f03b5ab wallet: Properly set hd chain counters when loading (Andrew Chow)
961b9e4e40019a87eaa11c8a9c3305870f7a6d75 wallet: Parse hdKeypath if key_origin is not available (Andrew Chow)
0652ee73ec880a66ec88bde007ee03c0b9d1b074 Add size check on meta.key_origin.path (Rob Fielding)

Pull request description:

  Currently inactive HD chains are only derived from at the time a key in that chain is found to have been used. However, at that time, the wallet may not be able to derive keys (e.g. it is locked). Currently we would just move on and not derive any new keys, however this could result in missing funds.

  This PR resolves this problem by adding memory only variables to `CHDChain` which track the highest known index. `TopUp` is modified to always try to top up the inactive HD chains, and this process will use the new variables to determine how much to top up. In this way, after an encrypted wallet is unlocked, the inactive HD chains will be topped up and hopefully funds will not be missed.

  Note that because these variables are not persisted to disk (because `CHDChain`s for inactive HD chains are not written to disk), if an encrypted wallet is not unlocked in the same session as a key from an inactive chain is found to be used, then it will not be topped up later unless more keys are found.

  Additionally, wallets which do not have upgraded key metadata will not derive any keys from inactive HD chains. This is resolved by using the derivation path string in `CKeyMetadata.hdKeypath` to determine what indexes to derive.

ACKs for top commit:
  laanwj:
    Code review ACK c4d76c6faa3adf06f192649e169ca860ce420d30

Tree-SHA512: b2b572ad7f1b1b2847edece09f7583543d63997e18ae32764e5a27ad608dd64b9bdb2d84ea27137894e986a8e82f047a3dba9c8015b74f5f179961911f0c4095
2022-03-02 09:35:07 +01:00
2021-09-07 06:12:53 +03:00
2022-01-03 04:48:41 +08:00
2021-09-09 19:53:12 +05:30

Bitcoin Core integration/staging tree

https://bitcoincore.org

For an immediately usable, binary version of the Bitcoin Core software, see https://bitcoincore.org/en/download/.

Further information about Bitcoin Core is available in the doc folder.

What is Bitcoin?

Bitcoin is an experimental digital currency that enables instant payments to anyone, anywhere in the world. Bitcoin uses peer-to-peer technology to operate with no central authority: managing transactions and issuing money are carried out collectively by the network. Bitcoin Core is the name of open source software which enables the use of this currency.

For more information read the original Bitcoin whitepaper.

License

Bitcoin Core is released under the terms of the MIT license. See COPYING for more information or see https://opensource.org/licenses/MIT.

Development Process

The master branch is regularly built (see doc/build-*.md for instructions) and tested, but it is not guaranteed to be completely stable. Tags are created regularly from release branches to indicate new official, stable release versions of Bitcoin Core.

The https://github.com/bitcoin-core/gui repository is used exclusively for the development of the GUI. Its master branch is identical in all monotree repositories. Release branches and tags do not exist, so please do not fork that repository unless it is for development reasons.

The contribution workflow is described in CONTRIBUTING.md and useful hints for developers can be found in doc/developer-notes.md.

Testing

Testing and code review is the bottleneck for development; we get more pull requests than we can review and test on short notice. Please be patient and help out by testing other people's pull requests, and remember this is a security-critical project where any mistake might cost people lots of money.

Automated Testing

Developers are strongly encouraged to write unit tests for new code, and to submit new unit tests for old code. Unit tests can be compiled and run (assuming they weren't disabled in configure) with: make check. Further details on running and extending unit tests can be found in /src/test/README.md.

There are also regression and integration tests, written in Python. These tests can be run (if the test dependencies are installed) with: test/functional/test_runner.py

The CI (Continuous Integration) systems make sure that every pull request is built for Windows, Linux, and macOS, and that unit/sanity tests are run automatically.

Manual Quality Assurance (QA) Testing

Changes should be tested by somebody other than the developer who wrote the code. This is especially important for large or high-risk changes. It is useful to add a test plan to the pull request description if testing the changes is not straightforward.

Translations

Changes to translations as well as new translations can be submitted to Bitcoin Core's Transifex page.

Translations are periodically pulled from Transifex and merged into the git repository. See the translation process for details on how this works.

Important: We do not accept translation changes as GitHub pull requests because the next pull from Transifex would automatically overwrite them again.

Description
Bitcoin Core integration/staging tree
Readme 2.3 GiB
Languages
C++ 64.3%
Python 19.7%
C 12.1%
CMake 1.3%
Shell 0.9%
Other 1.6%