Files
bitcoin/doc/tor.md
merge-script 157bbd0a07 Merge bitcoin/bitcoin#32425: config: allow setting -proxy per network
e98c51fcce doc: update tor.md to mention the new -proxy=addr:port=tor (Vasil Dimov)
ca5781e23a config: allow setting -proxy per network (Vasil Dimov)

Pull request description:

  `-proxy=addr:port` specifies the proxy for all networks (except I2P). Previously only the Tor proxy could have been specified separately via `-onion=addr:port`.

  Make it possible to specify separately the proxy for IPv4, IPv6, Tor and CJDNS by e.g. `-proxy=addr:port=ipv6`. Or remove the proxy for a given network, e.g. `-proxy=0=cjdns`.

  Resolves: https://github.com/bitcoin/bitcoin/issues/24450

ACKs for top commit:
  pinheadmz:
    ACK e98c51fcce
  caesrcd:
    reACK e98c51fcce
  danielabrozzoni:
    Code Review ACK e98c51fcce
  1440000bytes:
    ACK e98c51fcce

Tree-SHA512: 0cb590cb72b9393cc36357e8bd7861514ec4c5bc044a154e59601420b1fd6240f336ab538ed138bc769fca3d17e03725d56de382666420dc0787895d5bfec131
2025-06-10 15:57:09 -04:00

10 KiB

TOR SUPPORT IN BITCOIN

It is possible to run Bitcoin Core as a Tor onion service, and connect to such services.

The following directions assume you have a Tor proxy running on port 9050. Many distributions default to having a SOCKS proxy listening on port 9050, but others may not. In particular, the Tor Browser Bundle defaults to listening on port 9150.

Compatibility

  • Starting with version 22.0, Bitcoin Core only supports Tor version 3 hidden services (Tor v3). Tor v2 addresses are ignored by Bitcoin Core and neither relayed nor stored.

  • Tor removed v2 support beginning with version 0.4.6.

How to see information about your Tor configuration via Bitcoin Core

There are several ways to see your local onion address in Bitcoin Core:

  • in the "Local addresses" output of CLI -netinfo
  • in the "localaddresses" output of RPC getnetworkinfo
  • in the debug log (grep for "AddLocal"; the Tor address ends in .onion)

You may set the -debug=tor config logging option to have additional information in the debug log about your Tor configuration.

CLI -addrinfo returns the number of addresses known to your node per network. This can be useful to see how many onion peers your node knows, e.g. for -onlynet=onion.

You can use the getnodeaddresses RPC to fetch a number of onion peers known to your node; run bitcoin-cli help getnodeaddresses for details.

bitcoin rpc can also be substituted for bitcoin-cli.

1. Run Bitcoin Core behind a Tor proxy

The first step is running Bitcoin Core behind a Tor proxy. This will already anonymize all outgoing connections, but more is possible.

-proxy=ip[:port]
    Set the proxy server. It will be used to try to reach .onion addresses
    as well. You need to use -noonion or -onion=0 to explicitly disable
    outbound access to onion services.

-proxy=ip[:port]=tor
or
-onion=ip[:port]
    Set the proxy server for reaching .onion addresses. You do not need to
    set this if it's the same as the generic -proxy. You can use -onion=0 to
    explicitly disable access to onion services.
    ------------------------------------------------------------------------
    Note: The proxy for DNS requests is taken from
    -proxy=addr:port or
    -proxy=addr:port=ipv4 or
    -proxy=addr:port=ipv6
    (last one if multiple options are given). It is not taken from
    -proxy=addr:port=tor or
    -onion=addr:port.
    If no proxy for DNS requests is configured, then they will be done using
    the functions provided by the operating system, most likely resulting in
    them being done over the clearnet to the DNS servers of the internet
    service provider.
    ------------------------------------------------------------------------

If -proxy or -onion is specified multiple times, later occurences override earlier ones and command line overrides the config file. UNIX domain sockets may be used for proxy connections. Set -onion or -proxy to the local socket path with the prefix unix: (e.g. -onion=unix:/home/me/torsocket).

-listen
    When using -proxy, listening is disabled by default. If you want to
    manually configure an onion service (see section 3), you'll need to
    enable it explicitly.

-connect=X
-addnode=X
-seednode=X
    When behind a Tor proxy, you can specify .onion addresses instead of IP
    addresses or hostnames in these parameters. Such addresses can also be
    exchanged with other P2P nodes.

-onlynet=onion
    Make automatic outbound connections only to .onion addresses. Inbound
    and manual connections are not affected by this option. It can be
    specified multiple times to allow multiple networks, e.g. onlynet=onion,
    onlynet=i2p, onlynet=cjdns.

In a typical situation, this suffices to run behind a Tor proxy:

bitcoind -proxy=127.0.0.1:9050

bitcoin node or bitcoin gui can also be substituted for bitcoind.

2. Automatically create a Bitcoin Core onion service

Bitcoin Core makes use of Tor's control socket API to create and destroy ephemeral onion services programmatically. This means that if Tor is running and proper authentication has been configured, Bitcoin Core automatically creates an onion service to listen on. The goal is to increase the number of available onion nodes.

This feature is enabled by default if Bitcoin Core is listening (-listen) and it requires a Tor connection to work. It can be explicitly disabled with -listenonion=0. If it is not disabled, it can be configured using the -torcontrol and -torpassword settings.

To see verbose Tor information in the bitcoind debug log, pass -debug=tor.

Control Port

You may need to set up the Tor Control Port. On Linux distributions there may be some or all of the following settings in /etc/tor/torrc, generally commented out by default (if not, add them):

ControlPort 9051
CookieAuthentication 1
CookieAuthFileGroupReadable 1
DataDirectoryGroupReadable 1

Add or uncomment those, save, and restart Tor (usually systemctl restart tor or sudo systemctl restart tor on most systemd-based systems, including recent Debian and Ubuntu, or just restart the computer).

Authentication

Connecting to Tor's control socket API requires one of two authentication methods to be configured: cookie authentication or bitcoind's -torpassword configuration option.

For cookie authentication, the user running bitcoind must have read access to the CookieAuthFile specified in the Tor configuration. In some cases this is preconfigured and the creation of an onion service is automatic. Don't forget to use the -debug=tor bitcoind configuration option to enable Tor debug logging.

If a permissions problem is seen in the debug log, e.g. tor: Authentication cookie /run/tor/control.authcookie could not be opened (check permissions), it can be resolved by adding both the user running Tor and the user running bitcoind to the same Tor group and setting permissions appropriately.

On Debian-derived systems, the Tor group will likely be debian-tor and one way to verify could be to list the groups and grep for a "tor" group name:

getent group | cut -d: -f1 | grep -i tor

You can also check the group of the cookie file. On most Linux systems, the Tor auth cookie will usually be /run/tor/control.authcookie:

TORGROUP=$(stat -c '%G' /run/tor/control.authcookie)

Once you have determined the ${TORGROUP} and selected the ${USER} that will run bitcoind, run this as root:

usermod -a -G ${TORGROUP} ${USER}

Then restart the computer (or log out) and log in as the ${USER} that will run bitcoind.

torpassword authentication

For the -torpassword=password option, the password is the clear text form that was used when generating the hashed password for the HashedControlPassword option in the Tor configuration file.

The hashed password can be obtained with the command tor --hash-password password (refer to the Tor Dev Manual for more details).

3. Manually create a Bitcoin Core onion service

You can also manually configure your node to be reachable from the Tor network. Add these lines to your /etc/tor/torrc (or equivalent config file):

HiddenServiceDir /var/lib/tor/bitcoin-service/
HiddenServicePort 8333 127.0.0.1:8334

The directory can be different of course, but virtual port numbers should be equal to your bitcoind's P2P listen port (8333 by default), and target addresses and ports should be equal to binding address and port for inbound Tor connections (127.0.0.1:8334 by default).

-externalip=X   You can tell bitcoin about its publicly reachable addresses using
                this option, and this can be an onion address. Given the above
                configuration, you can find your onion address in
                /var/lib/tor/bitcoin-service/hostname. For connections
                coming from unroutable addresses (such as 127.0.0.1, where the
                Tor proxy typically runs), onion addresses are given
                preference for your node to advertise itself with.

                You can set multiple local addresses with -externalip. The
                one that will be rumoured to a particular peer is the most
                compatible one and also using heuristics, e.g. the address
                with the most incoming connections, etc.

-listen         You'll need to enable listening for incoming connections, as this
                is off by default behind a proxy.

-discover       When -externalip is specified, no attempt is made to discover local
                IPv4 or IPv6 addresses. If you want to run a dual stack, reachable
                from both Tor and IPv4 (or IPv6), you'll need to either pass your
                other addresses using -externalip, or explicitly enable -discover.
                Note that both addresses of a dual-stack system may be easily
                linkable using traffic analysis.

In a typical situation, where you're only reachable via Tor, this should suffice:

bitcoind -proxy=127.0.0.1:9050 -externalip=7zvj7a2imdgkdbg4f2dryd5rgtrn7upivr5eeij4cicjh65pooxeshid.onion -listen

(obviously, replace the .onion address with your own). It should be noted that you still listen on all devices and another node could establish a clearnet connection, when knowing your address. To mitigate this, additionally bind the address of your Tor proxy:

bitcoind ... -bind=127.0.0.1:8334=onion

If you don't care too much about hiding your node, and want to be reachable on IPv4 as well, use discover instead:

bitcoind ... -discover

and open port 8333 on your firewall (or use port mapping, i.e., -natpmp).

If you only want to use Tor to reach .onion addresses, but not use it as a proxy for normal IPv4/IPv6 communication, use:

bitcoind -onion=127.0.0.1:9050 -externalip=7zvj7a2imdgkdbg4f2dryd5rgtrn7upivr5eeij4cicjh65pooxeshid.onion -discover

4. Privacy recommendations

  • Do not add anything but Bitcoin Core ports to the onion service created in section 3. If you run a web service too, create a new onion service for that. Otherwise it is trivial to link them, which may reduce privacy. Onion services created automatically (as in section 2) always have only one port open.