0420f99f429ce2382057e101859067f40de47be0 Create net_peer_connection unit tests (Jon Atack) 4b834f649921aceb44d3e0b5a2ffd7847903f9f7 Allow unit tests to access additional CConnman members (Jon Atack) 34b9ef443bc2655a85c8802edc5d5d48d792a286 net/rpc: Makes CConnman::GetAddedNodeInfo able to return only non-connected address on request (Sergi Delgado Segura) 94e8882d820969ddc83f24f4cbe1515a886da4ea rpc: Prevents adding the same ip more than once when formatted differently (Sergi Delgado Segura) 2574b7e177ef045e64f1dd48cb000640ff5103d3 net/rpc: Check all resolved addresses in ConnectNode rather than just one (Sergi Delgado Segura) Pull request description: ## Rationale Currently, `addnode` has a couple of corner cases that allow it to either connect to the same peer more than once, hence wasting outbound connection slots, or add redundant information to `m_added_nodes`, hence making Bitcoin iterate through useless data on a regular basis. ### Connecting to the same node more than once In general, connecting to the same node more than once is something we should try to prevent. Currently, this is possible via `addnode` in two different ways: 1. Calling `addnode` more than once in a short time period, using two equivalent but distinct addresses 2. Calling `addnode add` using an IP, and `addnode onetry` after with an address that resolved to the same IP For the former, the issue boils down to `CConnman::ThreadOpenAddedConnections` calling `CConnman::GetAddedNodeInfo` once, and iterating over the result to open connections (`CConman::OpenNetworkConnection`) on the same loop for all addresses.`CConnman::ConnectNode` only checks a single address, at random, when resolving from a hostname, and uses it to check whether we are already connected to it. An example to test this would be calling: ``` bitcoin-cli addnode "127.0.0.1:port" add bitcoin-cli addnode "localhost:port" add ``` And check how it allows us to perform both connections some times, and some times it fails. The latter boils down to the same issue, but takes advantage of `onetry` bypassing the `CConnman::ThreadOpenAddedConnections` logic and calling `CConnman::OpenNetworkConnection` straightaway. A way to test this would be: ``` bitcoin-cli addnode "127.0.0.1:port" add bitcoin-cli addnode "localhost:port" onetry ``` ### Adding the same peer with two different, yet equivalent, addresses The current implementation of `addnode` is pretty naive when checking what data is added to `m_added_nodes`. Given the collection stores strings, the checks at `CConnman::AddNode()` basically check wether the exact provided string is already in the collection. If so, the data is rejected, otherwise, it is accepted. However, ips can be formatted in several ways that would bypass those checks. Two examples would be `127.0.0.1` being equal to `127.1` and `[::1]` being equal to `[0:0:0:0:0:0:0:1]`. Adding any pair of these will be allowed by the rpc command, and both will be reported as connected by `getaddednodeinfo`, given they map to the same `CService`. This is less severe than the previous issue, since even tough both nodes are reported as connected by `getaddednodeinfo`, there is only a single connection to them (as properly reported by `getpeerinfo`). However, this adds redundant data to `m_added_nodes`, which is undesirable. ### Parametrize `CConnman::GetAddedNodeInfo` Finally, this PR also parametrizes `CConnman::GetAddedNodeInfo` so it returns either all added nodes info, or only info about the nodes we are **not** connected to. This method is used both for `rpc`, in `getaddednodeinfo`, in which we are reporting all data to the user, so the former applies, and to check what nodes we are not connected to, in `CConnman::ThreadOpenAddedConnections`, in which we are currently returning more data than needed and then actively filtering using `CService.fConnected()` ACKs for top commit: jonatack: re-ACK 0420f99f429ce2382057e101859067f40de47be0 kashifs: > > tACK [0420f9](0420f99f42
) sr-gi: > > > tACK [0420f9](0420f99f42
) mzumsande: Tested ACK 0420f99f429ce2382057e101859067f40de47be0 Tree-SHA512: a3a10e748c12d98d439dfb193c75bc8d9486717cda5f41560f5c0ace1baef523d001d5e7eabac9fa466a9159a30bb925cc1327c2d6c4efb89dcaf54e176d1752
Bitcoin Core integration/staging tree
For an immediately usable, binary version of the Bitcoin Core software, see https://bitcoincore.org/en/download/.
What is Bitcoin Core?
Bitcoin Core connects to the Bitcoin peer-to-peer network to download and fully validate blocks and transactions. It also includes a wallet and graphical user interface, which can be optionally built.
Further information about Bitcoin Core is available in the doc folder.
License
Bitcoin Core is released under the terms of the MIT license. See COPYING for more information or see https://opensource.org/licenses/MIT.
Development Process
The master
branch is regularly built (see doc/build-*.md
for instructions) and tested, but it is not guaranteed to be
completely stable. Tags are created
regularly from release branches to indicate new official, stable release versions of Bitcoin Core.
The https://github.com/bitcoin-core/gui repository is used exclusively for the development of the GUI. Its master branch is identical in all monotree repositories. Release branches and tags do not exist, so please do not fork that repository unless it is for development reasons.
The contribution workflow is described in CONTRIBUTING.md and useful hints for developers can be found in doc/developer-notes.md.
Testing
Testing and code review is the bottleneck for development; we get more pull requests than we can review and test on short notice. Please be patient and help out by testing other people's pull requests, and remember this is a security-critical project where any mistake might cost people lots of money.
Automated Testing
Developers are strongly encouraged to write unit tests for new code, and to
submit new unit tests for old code. Unit tests can be compiled and run
(assuming they weren't disabled in configure) with: make check
. Further details on running
and extending unit tests can be found in /src/test/README.md.
There are also regression and integration tests, written
in Python.
These tests can be run (if the test dependencies are installed) with: test/functional/test_runner.py
The CI (Continuous Integration) systems make sure that every pull request is built for Windows, Linux, and macOS, and that unit/sanity tests are run automatically.
Manual Quality Assurance (QA) Testing
Changes should be tested by somebody other than the developer who wrote the code. This is especially important for large or high-risk changes. It is useful to add a test plan to the pull request description if testing the changes is not straightforward.
Translations
Changes to translations as well as new translations can be submitted to Bitcoin Core's Transifex page.
Translations are periodically pulled from Transifex and merged into the git repository. See the translation process for details on how this works.
Important: We do not accept translation changes as GitHub pull requests because the next pull from Transifex would automatically overwrite them again.