Files
bitcoin/src/test/miner_tests.cpp
merge-script fa283d28e2 Merge bitcoin/bitcoin#33629: Cluster mempool
17cf9ff7ef Use cluster size limit for -maxmempool bound, and allow -maxmempool=0 in general (Suhas Daftuar)
315e43e5d8 Sanity check `GetFeerateDiagram()` in CTxMemPool::check() (Suhas Daftuar)
de2e9a24c4 test: extend package rbf functional test to larger clusters (Suhas Daftuar)
4ef4ddb504 doc: update policy/packages.md for new package acceptance logic (Suhas Daftuar)
79f73ad713 Add check that GetSortedScoreWithTopology() agrees with CompareMiningScoreWithTopology() (Suhas Daftuar)
a86ac11768 Update comments for CTxMemPool class (Suhas Daftuar)
9567eaa66d Invoke TxGraph::DoWork() at appropriate times (Suhas Daftuar)
6c5c44f774 test: add functional test for new cluster mempool RPCs (Suhas Daftuar)
72f60c877e doc: Update mempool_replacements.md to reflect feerate diagram checks (Suhas Daftuar)
21693f031a Expose cluster information via rpc (Suhas Daftuar)
72e74e0d42 fuzz: try to add more code coverage for mempool fuzzing (Suhas Daftuar)
f107417490 bench: add more mempool benchmarks (Suhas Daftuar)
7976eb1ae7 Avoid violating mempool policy limits in tests (Suhas Daftuar)
84de685cf7 Stop tracking parents/children outside of txgraph (Suhas Daftuar)
88672e205b Rewrite GatherClusters to use the txgraph implementation (Suhas Daftuar)
1ca4f01090 Fix miniminer_tests to work with cluster limits (Suhas Daftuar)
1902111e0f Eliminate CheckPackageLimits, which no longer does anything (Suhas Daftuar)
3a646ec462 Rework RBF and TRUC validation (Suhas Daftuar)
19b8479868 Make getting parents/children a function of the mempool, not a mempool entry (Suhas Daftuar)
5560913e51 Rework truc_policy to use descendants, not children (Suhas Daftuar)
a4458d6c40 Use txgraph to calculate descendants (Suhas Daftuar)
c8b6f70d64 Use txgraph to calculate ancestors (Suhas Daftuar)
241a3e666b Simplify ancestor calculation functions (Suhas Daftuar)
b9cec7f0a1 Make removeConflicts private (Suhas Daftuar)
0402e6c780 Remove unused limits from CalculateMemPoolAncestors (Suhas Daftuar)
08be765ac2 Remove mempool logic designed to maintain ancestor/descendant state (Suhas Daftuar)
fc4e3e6bc1 Remove unused members from CTxMemPoolEntry (Suhas Daftuar)
ff3b398d12 mempool: eliminate accessors to mempool entry ancestor/descendant cached state (Suhas Daftuar)
b9a2039f51 Eliminate use of cached ancestor data in miniminer_tests and truc_policy (Suhas Daftuar)
ba09fc9774 mempool: Remove unused function CalculateDescendantMaximum (Suhas Daftuar)
8e49477e86 wallet: Replace max descendant count with cluster_count (Suhas Daftuar)
e031085fd4 Eliminate Single-Conflict RBF Carve Out (Suhas Daftuar)
cf3ab8e1d0 Stop enforcing descendant size/count limits (Suhas Daftuar)
89ae38f489 test: remove rbf carveout test from mempool_limit.py (Suhas Daftuar)
c0bd04d18f Calculate descendant information for mempool RPC output on-the-fly (Suhas Daftuar)
bdcefb8a8b Use mempool/txgraph to determine if a tx has descendants (Suhas Daftuar)
69e1eaa6ed Add test case for cluster size limits to TRUC logic (Suhas Daftuar)
9cda64b86c Stop enforcing ancestor size/count limits (Suhas Daftuar)
1f93227a84 Remove dependency on cached ancestor data in mini-miner (Suhas Daftuar)
9fbe0a4ac2 rpc: Calculate ancestor data from scratch for mempool rpc calls (Suhas Daftuar)
7961496dda Reimplement GetTransactionAncestry() to not rely on cached data (Suhas Daftuar)
feceaa42e8 Remove CTxMemPool::GetSortedDepthAndScore (Suhas Daftuar)
21b5cea588 Use cluster linearization for transaction relay sort order (Suhas Daftuar)
6445aa7d97 Remove the ancestor and descendant indices from the mempool (Suhas Daftuar)
216e693729 Implement new RBF logic for cluster mempool (Suhas Daftuar)
ff8f115dec policy: Remove CPFP carveout rule (Suhas Daftuar)
c3f1afc934 test: rewrite PopulateMempool to not violate mempool policy (cluster size) limits (Suhas Daftuar)
47ab32fdb1 Select transactions for blocks based on chunk feerate (Suhas Daftuar)
dec138d1dd fuzz: remove comparison between mini_miner block construction and miner (Suhas Daftuar)
6c2bceb200 bench: rewrite ComplexMemPool to not create oversized clusters (Suhas Daftuar)
1ad4590f63 Limit mempool size based on chunk feerate (Suhas Daftuar)
b11c89cab2 Rework miner_tests to not require large cluster limit (Suhas Daftuar)
95a8297d48 Check cluster limits when using -walletrejectlongchains (Suhas Daftuar)
95762e6759 Do not allow mempool clusters to exceed configured limits (Suhas Daftuar)
edb3e7cdf6 [test] rework/delete feature_rbf tests requiring large clusters (glozow)
435fd56711 test: update feature_rbf.py replacement test (Suhas Daftuar)
34e32985e8 Add new (unused) limits for cluster size/count (Suhas Daftuar)
838d7e3553 Add transactions to txgraph, but without cluster dependencies (Suhas Daftuar)
d5ed9cb3eb Add accessor for sigops-adjusted weight (Suhas Daftuar)
1bf3b51396 Add sigops adjusted weight calculator (Suhas Daftuar)
c18c68a950 Create a txgraph inside CTxMemPool (Suhas Daftuar)
29a94d5b2f Make CTxMemPoolEntry derive from TxGraph::Ref (Suhas Daftuar)
92b0079fe3 Allow moving CTxMemPoolEntry objects, disallow copying (Suhas Daftuar)
6c73e47448 mempool: Store iterators into mapTx in mapNextTx (Suhas Daftuar)
51430680ec Allow moving an Epoch::Marker (Suhas Daftuar)

Pull request description:

  [Reopening #28676 here as a new PR, because GitHub is slow to load the page making it hard to scroll through and see comments.  Also, that PR was originally opened with a prototype implementation which has changed significantly with the introduction of `TxGraph`.]

  This is an implementation of the [cluster mempool proposal](https://delvingbitcoin.org/t/an-overview-of-the-cluster-mempool-proposal/393).

  This branch implements the following observable behavior changes:

   - Maintains a partitioning of the mempool into connected clusters (via the `txgraph` class), which are limited in vsize to 101 kvB by default, and limited in count to 64 by default.
   - Each cluster is sorted ("linearized") to try to optimize for selecting highest-feerate-subsets of a cluster first
   - Transaction selection for mining is updated to use the cluster linearizations, selecting highest feerate "chunks" first for inclusion in a block template.
   - Mempool eviction is updated to use the cluster linearizations, selecting lowest feerate "chunks" first for removal.
   - The RBF rules are updated to: (a) drop the requirement that no new inputs are introduced; (b) change the feerate requirement to instead check that the feerate diagram of the mempool will strictly improve; (c) replace the direct conflicts limit with a directly-conflicting-clusters limit.
   - The CPFP carveout rule is eliminated (it doesn't make sense in a cluster-limited mempool)
   - The ancestor and descendant limits are no longer enforced.
   - New cluster count/cluster vsize limits are now enforced instead.
   - Transaction relay now uses chunk feerate comparisons to determine the order that newly received transactions are announced to peers.

  Additionally, the cached ancestor and descendant data are dropped from the mempool, along with the multi_index indices that were maintained to sort the mempool by ancestor and descendant feerates. For compatibility (eg with wallet behavior or RPCs exposing this), this information is now calculated dynamically instead.

ACKs for top commit:
  instagibbs:
    reACK 17cf9ff7ef
  glozow:
    reACK 17cf9ff7ef
  sipa:
    ACK 17cf9ff7ef

Tree-SHA512: bbde46d913d56f8d9c0426cb0a6c4fa80b01b0a4c2299500769921f886082fb4f51f1694e0ee1bc318c52e1976d7ebed8134a64eda0b8044f3a708c04938eee7
2025-11-25 10:35:11 +00:00

868 lines
40 KiB
C++

// Copyright (c) 2011-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <addresstype.h>
#include <coins.h>
#include <common/system.h>
#include <consensus/consensus.h>
#include <consensus/merkle.h>
#include <consensus/tx_verify.h>
#include <interfaces/mining.h>
#include <node/miner.h>
#include <policy/policy.h>
#include <test/util/random.h>
#include <test/util/transaction_utils.h>
#include <test/util/txmempool.h>
#include <txmempool.h>
#include <uint256.h>
#include <util/check.h>
#include <util/feefrac.h>
#include <util/strencodings.h>
#include <util/time.h>
#include <util/translation.h>
#include <validation.h>
#include <versionbits.h>
#include <pow.h>
#include <test/util/setup_common.h>
#include <memory>
#include <vector>
#include <boost/test/unit_test.hpp>
using namespace util::hex_literals;
using interfaces::BlockTemplate;
using interfaces::Mining;
using node::BlockAssembler;
namespace miner_tests {
struct MinerTestingSetup : public TestingSetup {
void TestPackageSelection(const CScript& scriptPubKey, const std::vector<CTransactionRef>& txFirst) EXCLUSIVE_LOCKS_REQUIRED(::cs_main);
void TestBasicMining(const CScript& scriptPubKey, const std::vector<CTransactionRef>& txFirst, int baseheight) EXCLUSIVE_LOCKS_REQUIRED(::cs_main);
void TestPrioritisedMining(const CScript& scriptPubKey, const std::vector<CTransactionRef>& txFirst) EXCLUSIVE_LOCKS_REQUIRED(::cs_main);
bool TestSequenceLocks(const CTransaction& tx, CTxMemPool& tx_mempool) EXCLUSIVE_LOCKS_REQUIRED(::cs_main)
{
CCoinsViewMemPool view_mempool{&m_node.chainman->ActiveChainstate().CoinsTip(), tx_mempool};
CBlockIndex* tip{m_node.chainman->ActiveChain().Tip()};
const std::optional<LockPoints> lock_points{CalculateLockPointsAtTip(tip, view_mempool, tx)};
return lock_points.has_value() && CheckSequenceLocksAtTip(tip, *lock_points);
}
CTxMemPool& MakeMempool()
{
// Delete the previous mempool to ensure with valgrind that the old
// pointer is not accessed, when the new one should be accessed
// instead.
m_node.mempool.reset();
bilingual_str error;
auto opts = MemPoolOptionsForTest(m_node);
// The "block size > limit" test creates a cluster of 1192590 vbytes,
// so set the cluster vbytes limit big enough so that the txgraph
// doesn't become oversized.
opts.limits.cluster_size_vbytes = 1'200'000;
m_node.mempool = std::make_unique<CTxMemPool>(opts, error);
Assert(error.empty());
return *m_node.mempool;
}
std::unique_ptr<Mining> MakeMining()
{
return interfaces::MakeMining(m_node);
}
};
} // namespace miner_tests
BOOST_FIXTURE_TEST_SUITE(miner_tests, MinerTestingSetup)
static CFeeRate blockMinFeeRate = CFeeRate(DEFAULT_BLOCK_MIN_TX_FEE);
constexpr static struct {
unsigned int extranonce;
unsigned int nonce;
} BLOCKINFO[]{{0, 3552706918}, {500, 37506755}, {1000, 948987788}, {400, 524762339}, {800, 258510074}, {300, 102309278},
{1300, 54365202}, {600, 1107740426}, {1000, 203094491}, {900, 391178848}, {800, 381177271}, {600, 87188412},
{0, 66522866}, {800, 874942736}, {1000, 89200838}, {400, 312638088}, {400, 66263693}, {500, 924648304},
{400, 369913599}, {500, 47630099}, {500, 115045364}, {100, 277026602}, {1100, 809621409}, {700, 155345322},
{800, 943579953}, {400, 28200730}, {900, 77200495}, {0, 105935488}, {400, 698721821}, {500, 111098863},
{1300, 445389594}, {500, 621849894}, {1400, 56010046}, {1100, 370669776}, {1200, 380301940}, {1200, 110654905},
{400, 213771024}, {1500, 120014726}, {1200, 835019014}, {1500, 624817237}, {900, 1404297}, {400, 189414558},
{400, 293178348}, {1100, 15393789}, {600, 396764180}, {800, 1387046371}, {800, 199368303}, {700, 111496662},
{100, 129759616}, {200, 536577982}, {500, 125881300}, {500, 101053391}, {1200, 471590548}, {900, 86957729},
{1200, 179604104}, {600, 68658642}, {1000, 203295701}, {500, 139615361}, {900, 233693412}, {300, 153225163},
{0, 27616254}, {1200, 9856191}, {100, 220392722}, {200, 66257599}, {1100, 145489641}, {1300, 37859442},
{400, 5816075}, {1200, 215752117}, {1400, 32361482}, {1400, 6529223}, {500, 143332977}, {800, 878392},
{700, 159290408}, {400, 123197595}, {700, 43988693}, {300, 304224916}, {700, 214771621}, {1100, 274148273},
{400, 285632418}, {1100, 923451065}, {600, 12818092}, {1200, 736282054}, {1000, 246683167}, {600, 92950402},
{1400, 29223405}, {1000, 841327192}, {700, 174301283}, {1400, 214009854}, {1000, 6989517}, {1200, 278226956},
{700, 540219613}, {400, 93663104}, {1100, 152345635}, {1500, 464194499}, {1300, 333850111}, {600, 258311263},
{600, 90173162}, {1000, 33590797}, {1500, 332866027}, {100, 204704427}, {1000, 463153545}, {800, 303244785},
{600, 88096214}, {0, 137477892}, {1200, 195514506}, {300, 704114595}, {900, 292087369}, {1400, 758684870},
{1300, 163493028}, {1200, 53151293}};
static std::unique_ptr<CBlockIndex> CreateBlockIndex(int nHeight, CBlockIndex* active_chain_tip) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
{
auto index{std::make_unique<CBlockIndex>()};
index->nHeight = nHeight;
index->pprev = active_chain_tip;
return index;
}
// Test suite for ancestor feerate transaction selection.
// Implemented as an additional function, rather than a separate test case,
// to allow reusing the blockchain created in CreateNewBlock_validity.
void MinerTestingSetup::TestPackageSelection(const CScript& scriptPubKey, const std::vector<CTransactionRef>& txFirst)
{
CTxMemPool& tx_mempool{MakeMempool()};
auto mining{MakeMining()};
BlockAssembler::Options options;
options.coinbase_output_script = scriptPubKey;
LOCK(tx_mempool.cs);
BOOST_CHECK(tx_mempool.size() == 0);
// Block template should only have a coinbase when there's nothing in the mempool
std::unique_ptr<BlockTemplate> block_template = mining->createNewBlock(options);
BOOST_REQUIRE(block_template);
CBlock block{block_template->getBlock()};
BOOST_REQUIRE_EQUAL(block.vtx.size(), 1U);
// waitNext() on an empty mempool should return nullptr because there is no better template
auto should_be_nullptr = block_template->waitNext({.timeout = MillisecondsDouble{0}, .fee_threshold = 1});
BOOST_REQUIRE(should_be_nullptr == nullptr);
// Unless fee_threshold is 0
block_template = block_template->waitNext({.timeout = MillisecondsDouble{0}, .fee_threshold = 0});
BOOST_REQUIRE(block_template);
// Test the ancestor feerate transaction selection.
TestMemPoolEntryHelper entry;
// Test that a medium fee transaction will be selected after a higher fee
// rate package with a low fee rate parent.
CMutableTransaction tx;
tx.vin.resize(1);
tx.vin[0].scriptSig = CScript() << OP_1;
tx.vin[0].prevout.hash = txFirst[0]->GetHash();
tx.vin[0].prevout.n = 0;
tx.vout.resize(1);
tx.vout[0].nValue = 5000000000LL - 1000;
// This tx has a low fee: 1000 satoshis
Txid hashParentTx = tx.GetHash(); // save this txid for later use
const auto parent_tx{entry.Fee(1000).Time(Now<NodeSeconds>()).SpendsCoinbase(true).FromTx(tx)};
AddToMempool(tx_mempool, parent_tx);
// This tx has a medium fee: 10000 satoshis
tx.vin[0].prevout.hash = txFirst[1]->GetHash();
tx.vout[0].nValue = 5000000000LL - 10000;
Txid hashMediumFeeTx = tx.GetHash();
const auto medium_fee_tx{entry.Fee(10000).Time(Now<NodeSeconds>()).SpendsCoinbase(true).FromTx(tx)};
AddToMempool(tx_mempool, medium_fee_tx);
// This tx has a high fee, but depends on the first transaction
tx.vin[0].prevout.hash = hashParentTx;
tx.vout[0].nValue = 5000000000LL - 1000 - 50000; // 50k satoshi fee
Txid hashHighFeeTx = tx.GetHash();
const auto high_fee_tx{entry.Fee(50000).Time(Now<NodeSeconds>()).SpendsCoinbase(false).FromTx(tx)};
AddToMempool(tx_mempool, high_fee_tx);
block_template = mining->createNewBlock(options);
BOOST_REQUIRE(block_template);
block = block_template->getBlock();
BOOST_REQUIRE_EQUAL(block.vtx.size(), 4U);
BOOST_CHECK(block.vtx[1]->GetHash() == hashParentTx);
BOOST_CHECK(block.vtx[2]->GetHash() == hashHighFeeTx);
BOOST_CHECK(block.vtx[3]->GetHash() == hashMediumFeeTx);
// Test the inclusion of package feerates in the block template and ensure they are sequential.
const auto block_package_feerates = BlockAssembler{m_node.chainman->ActiveChainstate(), &tx_mempool, options}.CreateNewBlock()->m_package_feerates;
BOOST_CHECK(block_package_feerates.size() == 2);
// parent_tx and high_fee_tx are added to the block as a package.
const auto combined_txs_fee = parent_tx.GetFee() + high_fee_tx.GetFee();
const auto combined_txs_size = parent_tx.GetTxSize() + high_fee_tx.GetTxSize();
FeeFrac package_feefrac{combined_txs_fee, combined_txs_size};
// The package should be added first.
BOOST_CHECK(block_package_feerates[0] == package_feefrac);
// The medium_fee_tx should be added next.
FeeFrac medium_tx_feefrac{medium_fee_tx.GetFee(), medium_fee_tx.GetTxSize()};
BOOST_CHECK(block_package_feerates[1] == medium_tx_feefrac);
// Test that a package below the block min tx fee doesn't get included
tx.vin[0].prevout.hash = hashHighFeeTx;
tx.vout[0].nValue = 5000000000LL - 1000 - 50000; // 0 fee
Txid hashFreeTx = tx.GetHash();
AddToMempool(tx_mempool, entry.Fee(0).FromTx(tx));
uint64_t freeTxSize{::GetSerializeSize(TX_WITH_WITNESS(tx))};
// Calculate a fee on child transaction that will put the package just
// below the block min tx fee (assuming 1 child tx of the same size).
CAmount feeToUse = blockMinFeeRate.GetFee(2*freeTxSize) - 1;
tx.vin[0].prevout.hash = hashFreeTx;
tx.vout[0].nValue = 5000000000LL - 1000 - 50000 - feeToUse;
Txid hashLowFeeTx = tx.GetHash();
AddToMempool(tx_mempool, entry.Fee(feeToUse).FromTx(tx));
// waitNext() should return nullptr because there is no better template
should_be_nullptr = block_template->waitNext({.timeout = MillisecondsDouble{0}, .fee_threshold = 1});
BOOST_REQUIRE(should_be_nullptr == nullptr);
block = block_template->getBlock();
// Verify that the free tx and the low fee tx didn't get selected
for (size_t i=0; i<block.vtx.size(); ++i) {
BOOST_CHECK(block.vtx[i]->GetHash() != hashFreeTx);
BOOST_CHECK(block.vtx[i]->GetHash() != hashLowFeeTx);
}
// Test that packages above the min relay fee do get included, even if one
// of the transactions is below the min relay fee
// Remove the low fee transaction and replace with a higher fee transaction
tx_mempool.removeRecursive(CTransaction(tx), MemPoolRemovalReason::REPLACED);
tx.vout[0].nValue -= 2; // Now we should be just over the min relay fee
hashLowFeeTx = tx.GetHash();
AddToMempool(tx_mempool, entry.Fee(feeToUse + 2).FromTx(tx));
// waitNext() should return if fees for the new template are at least 1 sat up
block_template = block_template->waitNext({.fee_threshold = 1});
BOOST_REQUIRE(block_template);
block = block_template->getBlock();
BOOST_REQUIRE_EQUAL(block.vtx.size(), 6U);
BOOST_CHECK(block.vtx[4]->GetHash() == hashFreeTx);
BOOST_CHECK(block.vtx[5]->GetHash() == hashLowFeeTx);
// Test that transaction selection properly updates ancestor fee
// calculations as ancestor transactions get included in a block.
// Add a 0-fee transaction that has 2 outputs.
tx.vin[0].prevout.hash = txFirst[2]->GetHash();
tx.vout.resize(2);
tx.vout[0].nValue = 5000000000LL - 100000000;
tx.vout[1].nValue = 100000000; // 1BTC output
// Increase size to avoid rounding errors: when the feerate is extremely small (i.e. 1sat/kvB), evaluating the fee
// at smaller sizes gives us rounded values that are equal to each other, which means we incorrectly include
// hashFreeTx2 + hashLowFeeTx2.
BulkTransaction(tx, 4000);
Txid hashFreeTx2 = tx.GetHash();
AddToMempool(tx_mempool, entry.Fee(0).SpendsCoinbase(true).FromTx(tx));
// This tx can't be mined by itself
tx.vin[0].prevout.hash = hashFreeTx2;
tx.vout.resize(1);
feeToUse = blockMinFeeRate.GetFee(freeTxSize);
tx.vout[0].nValue = 5000000000LL - 100000000 - feeToUse;
Txid hashLowFeeTx2 = tx.GetHash();
AddToMempool(tx_mempool, entry.Fee(feeToUse).SpendsCoinbase(false).FromTx(tx));
block_template = mining->createNewBlock(options);
BOOST_REQUIRE(block_template);
block = block_template->getBlock();
// Verify that this tx isn't selected.
for (size_t i=0; i<block.vtx.size(); ++i) {
BOOST_CHECK(block.vtx[i]->GetHash() != hashFreeTx2);
BOOST_CHECK(block.vtx[i]->GetHash() != hashLowFeeTx2);
}
// This tx will be mineable, and should cause hashLowFeeTx2 to be selected
// as well.
tx.vin[0].prevout.n = 1;
tx.vout[0].nValue = 100000000 - 10000; // 10k satoshi fee
AddToMempool(tx_mempool, entry.Fee(10000).FromTx(tx));
block_template = mining->createNewBlock(options);
BOOST_REQUIRE(block_template);
block = block_template->getBlock();
BOOST_REQUIRE_EQUAL(block.vtx.size(), 9U);
BOOST_CHECK(block.vtx[8]->GetHash() == hashLowFeeTx2);
}
std::vector<CTransactionRef> CreateBigSigOpsCluster(const CTransactionRef& first_tx)
{
std::vector<CTransactionRef> ret;
CMutableTransaction tx;
// block sigops > limit: 1000 CHECKMULTISIG + 1
tx.vin.resize(1);
// NOTE: OP_NOP is used to force 20 SigOps for the CHECKMULTISIG
tx.vin[0].scriptSig = CScript() << OP_0 << OP_0 << OP_CHECKSIG << OP_1;
tx.vin[0].prevout.hash = first_tx->GetHash();
tx.vin[0].prevout.n = 0;
tx.vout.resize(50);
for (auto &out : tx.vout) {
out.nValue = first_tx->vout[0].nValue / 50;
out.scriptPubKey = CScript() << OP_1;
}
tx.vout[0].nValue -= CENT;
CTransactionRef parent_tx = MakeTransactionRef(tx);
ret.push_back(parent_tx);
assert(GetLegacySigOpCount(*parent_tx) == 1);
// Tx1 has 1 sigops, 1 input, 50 outputs.
// Tx2-51 has 400 sigops: 1 input, 20 CHECKMULTISIG outputs
// Total: 1000 CHECKMULTISIG + 1
for (unsigned int i = 0; i < 50; ++i) {
auto tx2 = tx;
tx2.vin.resize(1);
tx2.vin[0].prevout.hash = parent_tx->GetHash();
tx2.vin[0].prevout.n = i;
tx2.vin[0].scriptSig = CScript() << OP_1;
tx2.vout.resize(20);
tx2.vout[0].nValue = parent_tx->vout[i].nValue - CENT;
for (auto &out : tx2.vout) {
out.nValue = 0;
out.scriptPubKey = CScript() << OP_0 << OP_0 << OP_0 << OP_NOP << OP_CHECKMULTISIG << OP_1;
}
ret.push_back(MakeTransactionRef(tx2));
}
return ret;
}
void MinerTestingSetup::TestBasicMining(const CScript& scriptPubKey, const std::vector<CTransactionRef>& txFirst, int baseheight)
{
Txid hash;
CMutableTransaction tx;
TestMemPoolEntryHelper entry;
entry.nFee = 11;
entry.nHeight = 11;
const CAmount BLOCKSUBSIDY = 50 * COIN;
const CAmount LOWFEE = CENT;
const CAmount HIGHFEE = COIN;
const CAmount HIGHERFEE = 4 * COIN;
auto mining{MakeMining()};
BOOST_REQUIRE(mining);
BlockAssembler::Options options;
options.coinbase_output_script = scriptPubKey;
{
CTxMemPool& tx_mempool{MakeMempool()};
LOCK(tx_mempool.cs);
// Just to make sure we can still make simple blocks
auto block_template{mining->createNewBlock(options)};
BOOST_REQUIRE(block_template);
CBlock block{block_template->getBlock()};
auto txs = CreateBigSigOpsCluster(txFirst[0]);
int64_t legacy_sigops = 0;
for (auto& t : txs) {
// If we don't set the number of sigops in the CTxMemPoolEntry,
// template creation fails during sanity checks.
AddToMempool(tx_mempool, entry.Fee(LOWFEE).Time(Now<NodeSeconds>()).SpendsCoinbase(true).FromTx(t));
legacy_sigops += GetLegacySigOpCount(*t);
BOOST_CHECK(tx_mempool.GetIter(t->GetHash()).has_value());
}
assert(tx_mempool.mapTx.size() == 51);
assert(legacy_sigops == 20001);
BOOST_CHECK_EXCEPTION(mining->createNewBlock(options), std::runtime_error, HasReason("bad-blk-sigops"));
}
{
CTxMemPool& tx_mempool{MakeMempool()};
LOCK(tx_mempool.cs);
// Check that the mempool is empty.
assert(tx_mempool.mapTx.empty());
// Just to make sure we can still make simple blocks
auto block_template{mining->createNewBlock(options)};
BOOST_REQUIRE(block_template);
CBlock block{block_template->getBlock()};
auto txs = CreateBigSigOpsCluster(txFirst[0]);
int64_t legacy_sigops = 0;
for (auto& t : txs) {
AddToMempool(tx_mempool, entry.Fee(LOWFEE).Time(Now<NodeSeconds>()).SpendsCoinbase(true).SigOpsCost(GetLegacySigOpCount(*t)*WITNESS_SCALE_FACTOR).FromTx(t));
legacy_sigops += GetLegacySigOpCount(*t);
BOOST_CHECK(tx_mempool.GetIter(t->GetHash()).has_value());
}
assert(tx_mempool.mapTx.size() == 51);
assert(legacy_sigops == 20001);
BOOST_REQUIRE(mining->createNewBlock(options));
}
{
CTxMemPool& tx_mempool{MakeMempool()};
LOCK(tx_mempool.cs);
// block size > limit
tx.vin.resize(1);
tx.vout.resize(1);
tx.vout[0].nValue = BLOCKSUBSIDY;
// 36 * (520char + DROP) + OP_1 = 18757 bytes
std::vector<unsigned char> vchData(520);
for (unsigned int i = 0; i < 18; ++i) {
tx.vin[0].scriptSig << vchData << OP_DROP;
tx.vout[0].scriptPubKey << vchData << OP_DROP;
}
tx.vin[0].scriptSig << OP_1;
tx.vout[0].scriptPubKey << OP_1;
tx.vin[0].prevout.hash = txFirst[0]->GetHash();
tx.vin[0].prevout.n = 0;
tx.vout[0].nValue = BLOCKSUBSIDY;
for (unsigned int i = 0; i < 63; ++i) {
tx.vout[0].nValue -= LOWFEE;
hash = tx.GetHash();
bool spendsCoinbase = i == 0; // only first tx spends coinbase
AddToMempool(tx_mempool, entry.Fee(LOWFEE).Time(Now<NodeSeconds>()).SpendsCoinbase(spendsCoinbase).FromTx(tx));
BOOST_CHECK(tx_mempool.GetIter(hash).has_value());
tx.vin[0].prevout.hash = hash;
}
BOOST_REQUIRE(mining->createNewBlock(options));
}
{
CTxMemPool& tx_mempool{MakeMempool()};
LOCK(tx_mempool.cs);
// orphan in tx_mempool, template creation fails
hash = tx.GetHash();
AddToMempool(tx_mempool, entry.Fee(LOWFEE).Time(Now<NodeSeconds>()).FromTx(tx));
BOOST_CHECK_EXCEPTION(mining->createNewBlock(options), std::runtime_error, HasReason("bad-txns-inputs-missingorspent"));
}
{
CTxMemPool& tx_mempool{MakeMempool()};
LOCK(tx_mempool.cs);
// child with higher feerate than parent
tx.vin[0].scriptSig = CScript() << OP_1;
tx.vin[0].prevout.hash = txFirst[1]->GetHash();
tx.vout[0].nValue = BLOCKSUBSIDY - HIGHFEE;
hash = tx.GetHash();
AddToMempool(tx_mempool, entry.Fee(HIGHFEE).Time(Now<NodeSeconds>()).SpendsCoinbase(true).FromTx(tx));
tx.vin[0].prevout.hash = hash;
tx.vin.resize(2);
tx.vin[1].scriptSig = CScript() << OP_1;
tx.vin[1].prevout.hash = txFirst[0]->GetHash();
tx.vin[1].prevout.n = 0;
tx.vout[0].nValue = tx.vout[0].nValue + BLOCKSUBSIDY - HIGHERFEE; // First txn output + fresh coinbase - new txn fee
hash = tx.GetHash();
AddToMempool(tx_mempool, entry.Fee(HIGHERFEE).Time(Now<NodeSeconds>()).SpendsCoinbase(true).FromTx(tx));
BOOST_REQUIRE(mining->createNewBlock(options));
}
{
CTxMemPool& tx_mempool{MakeMempool()};
LOCK(tx_mempool.cs);
// coinbase in tx_mempool, template creation fails
tx.vin.resize(1);
tx.vin[0].prevout.SetNull();
tx.vin[0].scriptSig = CScript() << OP_0 << OP_1;
tx.vout[0].nValue = 0;
hash = tx.GetHash();
// give it a fee so it'll get mined
AddToMempool(tx_mempool, entry.Fee(LOWFEE).Time(Now<NodeSeconds>()).SpendsCoinbase(false).FromTx(tx));
// Should throw bad-cb-multiple
BOOST_CHECK_EXCEPTION(mining->createNewBlock(options), std::runtime_error, HasReason("bad-cb-multiple"));
}
{
CTxMemPool& tx_mempool{MakeMempool()};
LOCK(tx_mempool.cs);
// double spend txn pair in tx_mempool, template creation fails
tx.vin[0].prevout.hash = txFirst[0]->GetHash();
tx.vin[0].scriptSig = CScript() << OP_1;
tx.vout[0].nValue = BLOCKSUBSIDY - HIGHFEE;
tx.vout[0].scriptPubKey = CScript() << OP_1;
hash = tx.GetHash();
AddToMempool(tx_mempool, entry.Fee(HIGHFEE).Time(Now<NodeSeconds>()).SpendsCoinbase(true).FromTx(tx));
tx.vout[0].scriptPubKey = CScript() << OP_2;
hash = tx.GetHash();
AddToMempool(tx_mempool, entry.Fee(HIGHFEE).Time(Now<NodeSeconds>()).SpendsCoinbase(true).FromTx(tx));
BOOST_CHECK_EXCEPTION(mining->createNewBlock(options), std::runtime_error, HasReason("bad-txns-inputs-missingorspent"));
}
{
CTxMemPool& tx_mempool{MakeMempool()};
LOCK(tx_mempool.cs);
// subsidy changing
int nHeight = m_node.chainman->ActiveChain().Height();
// Create an actual 209999-long block chain (without valid blocks).
while (m_node.chainman->ActiveChain().Tip()->nHeight < 209999) {
CBlockIndex* prev = m_node.chainman->ActiveChain().Tip();
CBlockIndex* next = new CBlockIndex();
next->phashBlock = new uint256(m_rng.rand256());
m_node.chainman->ActiveChainstate().CoinsTip().SetBestBlock(next->GetBlockHash());
next->pprev = prev;
next->nHeight = prev->nHeight + 1;
next->BuildSkip();
m_node.chainman->ActiveChain().SetTip(*next);
}
BOOST_REQUIRE(mining->createNewBlock(options));
// Extend to a 210000-long block chain.
while (m_node.chainman->ActiveChain().Tip()->nHeight < 210000) {
CBlockIndex* prev = m_node.chainman->ActiveChain().Tip();
CBlockIndex* next = new CBlockIndex();
next->phashBlock = new uint256(m_rng.rand256());
m_node.chainman->ActiveChainstate().CoinsTip().SetBestBlock(next->GetBlockHash());
next->pprev = prev;
next->nHeight = prev->nHeight + 1;
next->BuildSkip();
m_node.chainman->ActiveChain().SetTip(*next);
}
BOOST_REQUIRE(mining->createNewBlock(options));
// invalid p2sh txn in tx_mempool, template creation fails
tx.vin[0].prevout.hash = txFirst[0]->GetHash();
tx.vin[0].prevout.n = 0;
tx.vin[0].scriptSig = CScript() << OP_1;
tx.vout[0].nValue = BLOCKSUBSIDY - LOWFEE;
CScript script = CScript() << OP_0;
tx.vout[0].scriptPubKey = GetScriptForDestination(ScriptHash(script));
hash = tx.GetHash();
AddToMempool(tx_mempool, entry.Fee(LOWFEE).Time(Now<NodeSeconds>()).SpendsCoinbase(true).FromTx(tx));
tx.vin[0].prevout.hash = hash;
tx.vin[0].scriptSig = CScript() << std::vector<unsigned char>(script.begin(), script.end());
tx.vout[0].nValue -= LOWFEE;
hash = tx.GetHash();
AddToMempool(tx_mempool, entry.Fee(LOWFEE).Time(Now<NodeSeconds>()).SpendsCoinbase(false).FromTx(tx));
BOOST_CHECK_EXCEPTION(mining->createNewBlock(options), std::runtime_error, HasReason("block-script-verify-flag-failed"));
// Delete the dummy blocks again.
while (m_node.chainman->ActiveChain().Tip()->nHeight > nHeight) {
CBlockIndex* del = m_node.chainman->ActiveChain().Tip();
m_node.chainman->ActiveChain().SetTip(*Assert(del->pprev));
m_node.chainman->ActiveChainstate().CoinsTip().SetBestBlock(del->pprev->GetBlockHash());
delete del->phashBlock;
delete del;
}
}
CTxMemPool& tx_mempool{MakeMempool()};
LOCK(tx_mempool.cs);
// non-final txs in mempool
SetMockTime(m_node.chainman->ActiveChain().Tip()->GetMedianTimePast() + 1);
const int flags{LOCKTIME_VERIFY_SEQUENCE};
// height map
std::vector<int> prevheights;
// relative height locked
tx.version = 2;
tx.vin.resize(1);
prevheights.resize(1);
tx.vin[0].prevout.hash = txFirst[0]->GetHash(); // only 1 transaction
tx.vin[0].prevout.n = 0;
tx.vin[0].scriptSig = CScript() << OP_1;
tx.vin[0].nSequence = m_node.chainman->ActiveChain().Tip()->nHeight + 1; // txFirst[0] is the 2nd block
prevheights[0] = baseheight + 1;
tx.vout.resize(1);
tx.vout[0].nValue = BLOCKSUBSIDY-HIGHFEE;
tx.vout[0].scriptPubKey = CScript() << OP_1;
tx.nLockTime = 0;
hash = tx.GetHash();
AddToMempool(tx_mempool, entry.Fee(HIGHFEE).Time(Now<NodeSeconds>()).SpendsCoinbase(true).FromTx(tx));
BOOST_CHECK(CheckFinalTxAtTip(*Assert(m_node.chainman->ActiveChain().Tip()), CTransaction{tx})); // Locktime passes
BOOST_CHECK(!TestSequenceLocks(CTransaction{tx}, tx_mempool)); // Sequence locks fail
{
CBlockIndex* active_chain_tip = m_node.chainman->ActiveChain().Tip();
BOOST_CHECK(SequenceLocks(CTransaction(tx), flags, prevheights, *CreateBlockIndex(active_chain_tip->nHeight + 2, active_chain_tip))); // Sequence locks pass on 2nd block
}
// relative time locked
tx.vin[0].prevout.hash = txFirst[1]->GetHash();
tx.vin[0].nSequence = CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG | (((m_node.chainman->ActiveChain().Tip()->GetMedianTimePast()+1-m_node.chainman->ActiveChain()[1]->GetMedianTimePast()) >> CTxIn::SEQUENCE_LOCKTIME_GRANULARITY) + 1); // txFirst[1] is the 3rd block
prevheights[0] = baseheight + 2;
hash = tx.GetHash();
AddToMempool(tx_mempool, entry.Time(Now<NodeSeconds>()).FromTx(tx));
BOOST_CHECK(CheckFinalTxAtTip(*Assert(m_node.chainman->ActiveChain().Tip()), CTransaction{tx})); // Locktime passes
BOOST_CHECK(!TestSequenceLocks(CTransaction{tx}, tx_mempool)); // Sequence locks fail
const int SEQUENCE_LOCK_TIME = 512; // Sequence locks pass 512 seconds later
for (int i = 0; i < CBlockIndex::nMedianTimeSpan; ++i)
m_node.chainman->ActiveChain().Tip()->GetAncestor(m_node.chainman->ActiveChain().Tip()->nHeight - i)->nTime += SEQUENCE_LOCK_TIME; // Trick the MedianTimePast
{
CBlockIndex* active_chain_tip = m_node.chainman->ActiveChain().Tip();
BOOST_CHECK(SequenceLocks(CTransaction(tx), flags, prevheights, *CreateBlockIndex(active_chain_tip->nHeight + 1, active_chain_tip)));
}
for (int i = 0; i < CBlockIndex::nMedianTimeSpan; ++i) {
CBlockIndex* ancestor{Assert(m_node.chainman->ActiveChain().Tip()->GetAncestor(m_node.chainman->ActiveChain().Tip()->nHeight - i))};
ancestor->nTime -= SEQUENCE_LOCK_TIME; // undo tricked MTP
}
// absolute height locked
tx.vin[0].prevout.hash = txFirst[2]->GetHash();
tx.vin[0].nSequence = CTxIn::MAX_SEQUENCE_NONFINAL;
prevheights[0] = baseheight + 3;
tx.nLockTime = m_node.chainman->ActiveChain().Tip()->nHeight + 1;
hash = tx.GetHash();
AddToMempool(tx_mempool, entry.Time(Now<NodeSeconds>()).FromTx(tx));
BOOST_CHECK(!CheckFinalTxAtTip(*Assert(m_node.chainman->ActiveChain().Tip()), CTransaction{tx})); // Locktime fails
BOOST_CHECK(TestSequenceLocks(CTransaction{tx}, tx_mempool)); // Sequence locks pass
BOOST_CHECK(IsFinalTx(CTransaction(tx), m_node.chainman->ActiveChain().Tip()->nHeight + 2, m_node.chainman->ActiveChain().Tip()->GetMedianTimePast())); // Locktime passes on 2nd block
// ensure tx is final for a specific case where there is no locktime and block height is zero
tx.nLockTime = 0;
BOOST_CHECK(IsFinalTx(CTransaction(tx), /*nBlockHeight=*/0, m_node.chainman->ActiveChain().Tip()->GetMedianTimePast()));
// absolute time locked
tx.vin[0].prevout.hash = txFirst[3]->GetHash();
tx.nLockTime = m_node.chainman->ActiveChain().Tip()->GetMedianTimePast();
prevheights.resize(1);
prevheights[0] = baseheight + 4;
hash = tx.GetHash();
AddToMempool(tx_mempool, entry.Time(Now<NodeSeconds>()).FromTx(tx));
BOOST_CHECK(!CheckFinalTxAtTip(*Assert(m_node.chainman->ActiveChain().Tip()), CTransaction{tx})); // Locktime fails
BOOST_CHECK(TestSequenceLocks(CTransaction{tx}, tx_mempool)); // Sequence locks pass
BOOST_CHECK(IsFinalTx(CTransaction(tx), m_node.chainman->ActiveChain().Tip()->nHeight + 2, m_node.chainman->ActiveChain().Tip()->GetMedianTimePast() + 1)); // Locktime passes 1 second later
// mempool-dependent transactions (not added)
tx.vin[0].prevout.hash = hash;
prevheights[0] = m_node.chainman->ActiveChain().Tip()->nHeight + 1;
tx.nLockTime = 0;
tx.vin[0].nSequence = 0;
BOOST_CHECK(CheckFinalTxAtTip(*Assert(m_node.chainman->ActiveChain().Tip()), CTransaction{tx})); // Locktime passes
BOOST_CHECK(TestSequenceLocks(CTransaction{tx}, tx_mempool)); // Sequence locks pass
tx.vin[0].nSequence = 1;
BOOST_CHECK(!TestSequenceLocks(CTransaction{tx}, tx_mempool)); // Sequence locks fail
tx.vin[0].nSequence = CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG;
BOOST_CHECK(TestSequenceLocks(CTransaction{tx}, tx_mempool)); // Sequence locks pass
tx.vin[0].nSequence = CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG | 1;
BOOST_CHECK(!TestSequenceLocks(CTransaction{tx}, tx_mempool)); // Sequence locks fail
auto block_template = mining->createNewBlock(options);
BOOST_REQUIRE(block_template);
// None of the of the absolute height/time locked tx should have made
// it into the template because we still check IsFinalTx in CreateNewBlock,
// but relative locked txs will if inconsistently added to mempool.
// For now these will still generate a valid template until BIP68 soft fork
CBlock block{block_template->getBlock()};
BOOST_CHECK_EQUAL(block.vtx.size(), 3U);
// However if we advance height by 1 and time by SEQUENCE_LOCK_TIME, all of them should be mined
for (int i = 0; i < CBlockIndex::nMedianTimeSpan; ++i) {
CBlockIndex* ancestor{Assert(m_node.chainman->ActiveChain().Tip()->GetAncestor(m_node.chainman->ActiveChain().Tip()->nHeight - i))};
ancestor->nTime += SEQUENCE_LOCK_TIME; // Trick the MedianTimePast
}
m_node.chainman->ActiveChain().Tip()->nHeight++;
SetMockTime(m_node.chainman->ActiveChain().Tip()->GetMedianTimePast() + 1);
block_template = mining->createNewBlock(options);
BOOST_REQUIRE(block_template);
block = block_template->getBlock();
BOOST_CHECK_EQUAL(block.vtx.size(), 5U);
}
void MinerTestingSetup::TestPrioritisedMining(const CScript& scriptPubKey, const std::vector<CTransactionRef>& txFirst)
{
auto mining{MakeMining()};
BOOST_REQUIRE(mining);
BlockAssembler::Options options;
options.coinbase_output_script = scriptPubKey;
CTxMemPool& tx_mempool{MakeMempool()};
LOCK(tx_mempool.cs);
TestMemPoolEntryHelper entry;
// Test that a tx below min fee but prioritised is included
CMutableTransaction tx;
tx.vin.resize(1);
tx.vin[0].prevout.hash = txFirst[0]->GetHash();
tx.vin[0].prevout.n = 0;
tx.vin[0].scriptSig = CScript() << OP_1;
tx.vout.resize(1);
tx.vout[0].nValue = 5000000000LL; // 0 fee
Txid hashFreePrioritisedTx = tx.GetHash();
AddToMempool(tx_mempool, entry.Fee(0).Time(Now<NodeSeconds>()).SpendsCoinbase(true).FromTx(tx));
tx_mempool.PrioritiseTransaction(hashFreePrioritisedTx, 5 * COIN);
tx.vin[0].prevout.hash = txFirst[1]->GetHash();
tx.vin[0].prevout.n = 0;
tx.vout[0].nValue = 5000000000LL - 1000;
// This tx has a low fee: 1000 satoshis
Txid hashParentTx = tx.GetHash(); // save this txid for later use
AddToMempool(tx_mempool, entry.Fee(1000).Time(Now<NodeSeconds>()).SpendsCoinbase(true).FromTx(tx));
// This tx has a medium fee: 10000 satoshis
tx.vin[0].prevout.hash = txFirst[2]->GetHash();
tx.vout[0].nValue = 5000000000LL - 10000;
Txid hashMediumFeeTx = tx.GetHash();
AddToMempool(tx_mempool, entry.Fee(10000).Time(Now<NodeSeconds>()).SpendsCoinbase(true).FromTx(tx));
tx_mempool.PrioritiseTransaction(hashMediumFeeTx, -5 * COIN);
// This tx also has a low fee, but is prioritised
tx.vin[0].prevout.hash = hashParentTx;
tx.vout[0].nValue = 5000000000LL - 1000 - 1000; // 1000 satoshi fee
Txid hashPrioritsedChild = tx.GetHash();
AddToMempool(tx_mempool, entry.Fee(1000).Time(Now<NodeSeconds>()).SpendsCoinbase(false).FromTx(tx));
tx_mempool.PrioritiseTransaction(hashPrioritsedChild, 2 * COIN);
// Test that transaction selection properly updates ancestor fee calculations as prioritised
// parents get included in a block. Create a transaction with two prioritised ancestors, each
// included by itself: FreeParent <- FreeChild <- FreeGrandchild.
// When FreeParent is added, a modified entry will be created for FreeChild + FreeGrandchild
// FreeParent's prioritisation should not be included in that entry.
// When FreeChild is included, FreeChild's prioritisation should also not be included.
tx.vin[0].prevout.hash = txFirst[3]->GetHash();
tx.vout[0].nValue = 5000000000LL; // 0 fee
Txid hashFreeParent = tx.GetHash();
AddToMempool(tx_mempool, entry.Fee(0).SpendsCoinbase(true).FromTx(tx));
tx_mempool.PrioritiseTransaction(hashFreeParent, 10 * COIN);
tx.vin[0].prevout.hash = hashFreeParent;
tx.vout[0].nValue = 5000000000LL; // 0 fee
Txid hashFreeChild = tx.GetHash();
AddToMempool(tx_mempool, entry.Fee(0).SpendsCoinbase(false).FromTx(tx));
tx_mempool.PrioritiseTransaction(hashFreeChild, 1 * COIN);
tx.vin[0].prevout.hash = hashFreeChild;
tx.vout[0].nValue = 5000000000LL; // 0 fee
Txid hashFreeGrandchild = tx.GetHash();
AddToMempool(tx_mempool, entry.Fee(0).SpendsCoinbase(false).FromTx(tx));
auto block_template = mining->createNewBlock(options);
BOOST_REQUIRE(block_template);
CBlock block{block_template->getBlock()};
BOOST_REQUIRE_EQUAL(block.vtx.size(), 6U);
BOOST_CHECK(block.vtx[1]->GetHash() == hashFreeParent);
BOOST_CHECK(block.vtx[2]->GetHash() == hashFreePrioritisedTx);
BOOST_CHECK(block.vtx[3]->GetHash() == hashParentTx);
BOOST_CHECK(block.vtx[4]->GetHash() == hashPrioritsedChild);
BOOST_CHECK(block.vtx[5]->GetHash() == hashFreeChild);
for (size_t i=0; i<block.vtx.size(); ++i) {
// The FreeParent and FreeChild's prioritisations should not impact the child.
BOOST_CHECK(block.vtx[i]->GetHash() != hashFreeGrandchild);
// De-prioritised transaction should not be included.
BOOST_CHECK(block.vtx[i]->GetHash() != hashMediumFeeTx);
}
}
// NOTE: These tests rely on CreateNewBlock doing its own self-validation!
BOOST_AUTO_TEST_CASE(CreateNewBlock_validity)
{
auto mining{MakeMining()};
BOOST_REQUIRE(mining);
// Note that by default, these tests run with size accounting enabled.
CScript scriptPubKey = CScript() << "04678afdb0fe5548271967f1a67130b7105cd6a828e03909a67962e0ea1f61deb649f6bc3f4cef38c4f35504e51ec112de5c384df7ba0b8d578a4c702b6bf11d5f"_hex << OP_CHECKSIG;
BlockAssembler::Options options;
options.coinbase_output_script = scriptPubKey;
// Create and check a simple template
std::unique_ptr<BlockTemplate> block_template = mining->createNewBlock(options);
BOOST_REQUIRE(block_template);
{
CBlock block{block_template->getBlock()};
{
std::string reason;
std::string debug;
BOOST_REQUIRE(!mining->checkBlock(block, {.check_pow = false}, reason, debug));
BOOST_REQUIRE_EQUAL(reason, "bad-txnmrklroot");
BOOST_REQUIRE_EQUAL(debug, "hashMerkleRoot mismatch");
}
block.hashMerkleRoot = BlockMerkleRoot(block);
{
std::string reason;
std::string debug;
BOOST_REQUIRE(mining->checkBlock(block, {.check_pow = false}, reason, debug));
BOOST_REQUIRE_EQUAL(reason, "");
BOOST_REQUIRE_EQUAL(debug, "");
}
{
// A block template does not have proof-of-work, but it might pass
// verification by coincidence. Grind the nonce if needed:
while (CheckProofOfWork(block.GetHash(), block.nBits, Assert(m_node.chainman)->GetParams().GetConsensus())) {
block.nNonce++;
}
std::string reason;
std::string debug;
BOOST_REQUIRE(!mining->checkBlock(block, {.check_pow = true}, reason, debug));
BOOST_REQUIRE_EQUAL(reason, "high-hash");
BOOST_REQUIRE_EQUAL(debug, "proof of work failed");
}
}
// We can't make transactions until we have inputs
// Therefore, load 110 blocks :)
static_assert(std::size(BLOCKINFO) == 110, "Should have 110 blocks to import");
int baseheight = 0;
std::vector<CTransactionRef> txFirst;
for (const auto& bi : BLOCKINFO) {
const int current_height{mining->getTip()->height};
/**
* Simple block creation, nothing special yet.
* If current_height is odd, block_template will have already been
* set at the end of the previous loop.
*/
if (current_height % 2 == 0) {
block_template = mining->createNewBlock(options);
BOOST_REQUIRE(block_template);
}
CBlock block{block_template->getBlock()};
CMutableTransaction txCoinbase(*block.vtx[0]);
{
LOCK(cs_main);
block.nVersion = VERSIONBITS_TOP_BITS;
block.nTime = Assert(m_node.chainman)->ActiveChain().Tip()->GetMedianTimePast()+1;
txCoinbase.version = 1;
txCoinbase.vin[0].scriptSig = CScript{} << (current_height + 1) << bi.extranonce;
txCoinbase.vout.resize(1); // Ignore the (optional) segwit commitment added by CreateNewBlock (as the hardcoded nonces don't account for this)
txCoinbase.vout[0].scriptPubKey = CScript();
block.vtx[0] = MakeTransactionRef(txCoinbase);
if (txFirst.size() == 0)
baseheight = current_height;
if (txFirst.size() < 4)
txFirst.push_back(block.vtx[0]);
block.hashMerkleRoot = BlockMerkleRoot(block);
block.nNonce = bi.nonce;
}
std::shared_ptr<const CBlock> shared_pblock = std::make_shared<const CBlock>(block);
// Alternate calls between Chainman's ProcessNewBlock and submitSolution
// via the Mining interface. The former is used by net_processing as well
// as the submitblock RPC.
if (current_height % 2 == 0) {
BOOST_REQUIRE(Assert(m_node.chainman)->ProcessNewBlock(shared_pblock, /*force_processing=*/true, /*min_pow_checked=*/true, nullptr));
} else {
BOOST_REQUIRE(block_template->submitSolution(block.nVersion, block.nTime, block.nNonce, MakeTransactionRef(txCoinbase)));
}
{
LOCK(cs_main);
// The above calls don't guarantee the tip is actually updated, so
// we explicitly check this.
auto maybe_new_tip{Assert(m_node.chainman)->ActiveChain().Tip()};
BOOST_REQUIRE_EQUAL(maybe_new_tip->GetBlockHash(), block.GetHash());
}
if (current_height % 2 == 0) {
block_template = block_template->waitNext();
BOOST_REQUIRE(block_template);
} else {
// This just adds coverage
mining->waitTipChanged(block.hashPrevBlock);
}
}
LOCK(cs_main);
TestBasicMining(scriptPubKey, txFirst, baseheight);
m_node.chainman->ActiveChain().Tip()->nHeight--;
SetMockTime(0);
TestPackageSelection(scriptPubKey, txFirst);
m_node.chainman->ActiveChain().Tip()->nHeight--;
SetMockTime(0);
TestPrioritisedMining(scriptPubKey, txFirst);
}
BOOST_AUTO_TEST_SUITE_END()