Currently there is a single context per sequence, shared all by
all multimodal inputs. Since we build a vision encoder graph per
image, with a large number of inputs we can eventually hit the
maximum number of graph nodes per context.
This changes to use a separate context for each image, ensuring
that available resource limits are consistent.
Models may require that a set of inputs all be processed as part
of the same batch. For example, if an image has multiple patches
with fully connected attention between them, we should not split
the batch in the middle of an image.
Fixes#9697
Softcap isn't in the whitepaper/implementation for the language model so we should remove it. There is no discernible difference in output with it removed.
This is useful for a few things:
- Work around bugs, such as having 2 images in one batch
- Keep the image in a single batch for fully connected attention
- Improve performance by not evaluating embeddings multiple times
The encoder cache needs to know the position of images in the input
stream so that it knows when to delete them. Previously images didn't
have a position, so we implied one by breaking batches before an
image and then assuming the image was in the first position. However,
multimodal objects are now given explicit positions in the input
stream, so we can use that instead.
Breaking batches was also a way to simulate a cross attention mask
for mllama. However, given that it only supports a single sequence
and a single image, this mask doesn't serve any real purpose.
Removing the batch break does not appear to affect the quality of
the output.
Most of this is simply moving the input data structures to a new
package to avoid import cycles.
use a similar strategy as llama.cpp for deciding where tensors should be
allocated. this will be improved later to be aware of usable memory
before assigning the tensor
Various vision models have different requirements for how they
receive their inputs. For example:
- Mllama wants images together with text and the image embeddings
don't themselves have positions or get stored in the main KV cache
- Llava-style models feed in embeddings similar to tokens and
images correspond to a varying number of tokens in the cache.
In addition, the strategy for providing inputs must support batching
and multiple sequences, which are managed by the runner. At the same
time, we want to keep data handling fully in the model so that new
architectures are not bottlenecked by runner code which does not
understand their particular requirements.
This provides a method for models to edit the input stream so that
it meets their needs while still being in a format that the runner
understands. This allows the runner to avoid special processing
for different models.
In addition, this fixes a regression where non-vision models may
try to incorrectly interpret images.
We sometimes tokenize partial strings. For example, with
multimodal inputs, we split the input string around the images
and then tokenize each piece. In these cases, we should only add
the special tokens on the first piece.
* Include unified vision layers in memory prediction
For newer vision models with a single gguf, include
the projection estimates.
* Adjust CLI to handle both styles of vision model metadata
* Wire up new tokenizers for new engine
If we're loading the new engine, utilize the new model
text processor instead of calling into cgo wrappers for
llama.cpp. This also cleans up some tech debt from the
older tokenization flow for the C++ server which was
no longer used.
This also adjusts the grammar handling logic to pass
through to the new engine instead of utilizing the cgo
schema to grammar call.
* Lay foundation for auto selection of new engine
Prior to performing attention, we need to permute query, key
and value. Currently we call Contiguous after each of these
permutations, which is correct but expensive. Avoiding the
3 calls to Contiguous increases performance by over 20%.
The permutations of query and key do not violate the continuity
rules for mulmat and the Contiguous call can be simply removed.
Value requires a different permutation and does require Contiguous.
However, we can use the copy into the cache as a way to perform this
without further overhead.
To support this and avoid unexpected tensor shapes that are seen by
models, we need tighter integration between attention, cache
and backend. Future optimization will also likely need this structure
- for example, flash attention has special padding requirements in
the cache and other backends may have their own needs.
This further contains the operations that go into attention so that
these and other optimizations can be handled transparently. Models
that have special requirements for attention can still implement
their own version of it.
update Context.Forward to accept multiple tensors to match
Context.Compute signature
update Context.Forward to return Context such that it can be chained
with Context.Compute
There are two benefits to doing this:
- Provide a library function that models can use, reducing code for
each model implementation
- Enables a single place to drop in optimized implementations of
attention based on the backend or other factors. One is provided for
GGML.
On CUDA this improves token generation rate by about 3%. It does not
have a significant effect on Metal.
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Currently Rows is called as the last step in a model computation
to get the values for the output tokens. However, if we move it
earlier in the process then we can trim out computations that
never get used. This is similar to how models are defined in
llama.cpp.
Changing the model definition in this way improves token generation
performance by approximately 8%.
Currently the following parameters are in the runner but not used:
- numGPULayers
- mainGPU
- threads
- tensorSplit
This passes them through to the backend, which is where they would
actually get used. However, the GGML backend does not yet do anything
with them.
This provides integration with the new Ollama engine
(5824541 next ollama runner (#7913)) and the rest of the Ollama
infrastructure such as the runner and Ollama server.
In addition, it also builds out the KV cache infrastructure to
support requirements of how Ollama runs models such as:
- Parallel processing
- Memory management for defragmentation and shifting
- Multi-modal modals
Both old and new engines continue to be supported. By default, only
the old engine is used. To enable the new engine:
Start the server with the OLLAMA_NEW_ENGINE environment variable set:
OLLAMA_NEW_ENGINE=1 ./ollama serve
Start a model that is supported by the Ollama engine. This one is Llama 3.1 8b Q4_K_M:
./ollama run jessegross/llama3.1
Special tokens are currently read as uint32 from the model metadata.
However, all other parts of the system (including the tokenizer) use
int32 to represent tokens so it is impossible to represent the high
portion of the unsigned range. For consistency and to avoid casts,
we should just use int32 everywhere.
Currently, if a model uses an interface for its data structures (as mllama
does) then the tensor data in the structs implementing that interface will
not get loaded.
Most tensor backends try to optimize performance by using a lower
precision for matmuls. However, some operations (such as kq) on
some models are sensitive to this and require full precision.
There are two cases where we may not have an output after computing:
- Prompt processing where the length of the input exceeds the batch
size
- Internal memory management operations such as cache defrag and shift
Currently there is a mixture of int and int64 used when dealing with
tensor dimensions and shapes, which causes unnecessary conversions -
they all should be the same type.
In general, most interfaces (such as Pytorch) use int64 for
generality but most implementations (such as CUDA) use int32 for
performance. There isn't much benefit to us to being more flexible
than the implementations we are likely to run on.
In addition, as a practical matter, a model with a tensor with a single
dimension larger than 32 bits is unlikely to run on a 32-bit machine.