If a GPU's free memory is less than the reserved amount, we might get
an underflow. Since it is an unsigned uint64, we print this as a large
number rather than the more correct 0. This only affects logging, the
actual layout code already handles this correctly.
Bug #12138
* perf: build graph for next batch in parallel to keep GPU busy
This refactors the main run loop of the ollama runner to perform the main GPU
intensive tasks (Compute+Floats) in a go routine so we can prepare the next
batch in parallel to reduce the amount of time the GPU stalls waiting for the
next batch of work.
* tests: tune integration tests for ollama engine
This tunes the integration tests to focus more on models supported
by the new engine.
The recent memory management changes caused all GPUs to be visible
to the runner, regardless of whether they are ultimately used. This
caused CUDA devices to allocate a primary context (~300 MB VRAM) on
each GPU, for each model. This is unnecessary, so we can both avoid
touching GPUs that we exclude in the early stage of allocation and
freeing the memory for any that we touch but don't use.
The issue will continue to exist for the old engine, since it touches
all devices during initialization.
there's two bugs here.
1. the check for a layer id is incorrect and should be >= 0 since layer
0 is valid
2. if both tensors have an layer identifier, it will only compare the
layer id which will return 0 if the tensors are in the same layer.
instead it should fallback to comparing the full tensor name
The thinking parser will automatically transition to being a
pass-through if non-whitespace is seen before an opening tag. However,
we weren't clearing the buffer after the first non-whitespace input, so
in practice the first token would be emitted twice.
Added a test that demonstrated this, and then fixed the bug.
With old memory estimates, it's currently impossible to load more
than one model at a time when no GPUs are available. This is because
the check for whether we need to evict a model looks to see if all
layers of the new model can be loaded onto GPUs, which is never true
if there are no GPUs. Before the memory management changes, there
was a special code path for CPU-only systems.
This problem does not exist with new memory estimates.
Fixes#11974
0x007e is a tilde and was getting adjusted (+0x00a2) to 0x0120 in the
encode, but then in the decode it was getting adjusted down (-0x0100) to
0x0020. The boundary for the +0x00a2 case has been adjusted to fix this
Fixes: #11966
Flash attention kernels require the mask of the KV cache be a F16
rather than an F32. We can use the GGML operation ggml_cast to do
this rather than doing it ourselves, which allows reuse of a
preallocated buffer in the graph rather than allocating a new one
for each batch. This improves token generation performance with
flash attention by 10-30% (with gpt-oss). This also makes performance
with flash attention better than without it, as expected.
We dump out our best memory estimate after we complete processing
for any reason, including errors. This is helpful for finding what
what stopped us in error conditions but in some cases we might not
have gotten even the first result yet.
Fixes#11957
In <https://github.com/ollama/ollama/issues/11704#issuecomment-3177380197>
I noticed that hyphens in function names could possibly cause the model
to become confused. Later in that issue I found other explanations, but
at a minimum tool names with spaces in them are confusing to the model
because of the prompt format.
In this change I create a mapper that converts arbitrary tool names into
valid typescript identifiers. It's a little overly strict in that it
doesn't allow all unicode characters that might be valid in ts
identifiers, but it's still very permissive. Since mappings aren't
reversible, we must temporarily store this mapping in order to unmap it
if the model comes back with a call. We also handle the case where
multiple mappings collide into the same mapping and append a counter to
the end to make them unique