Ryan Ofsky 03cff2c142
Merge bitcoin/bitcoin#31191: build: Make G_FUZZING constexpr, require -DBUILD_FOR_FUZZING=ON to fuzz
fafbf8acf419d5e2ca307e5804099361ca7471af Make G_FUZZING constexpr, require -DBUILD_FOR_FUZZING=ON to execute a fuzz target (MarcoFalke)
fae3cf0ffa619f8fe7e4ace1889fe7abbb53a532 ci: Temporarily disable macOS/Windows fuzz step (MarcoFalke)

Pull request description:

  `g_fuzzing` is used inside `Assume` at runtime, causing significant overhead in hot paths. See https://github.com/bitcoin/bitcoin/issues/31178

  One could simply remove the `g_fuzzing` check from the `Assume`, but this would make fuzzing a bit less useful. Also, it would be unclear if `g_fuzzing` adds a runtime overhead in other code paths today or in the future.

  Fix all issues by making `G_FUZZING` equal to the build option `BUILD_FOR_FUZZING`, and for consistency in fuzzing, require it to be set when executing any fuzz target.

  Fixes https://github.com/bitcoin/bitcoin/issues/31178

  Temporarily this drops fuzzing from two CI tasks, but they can be re-added in a follow-up with something like https://github.com/bitcoin/bitcoin/pull/31073

ACKs for top commit:
  marcofleon:
    Tested ACK fafbf8acf419d5e2ca307e5804099361ca7471af
  davidgumberg:
    I still ACK fafbf8acf4 for fixing the regression measured in #31178.
  ryanofsky:
    Code review ACK fafbf8acf419d5e2ca307e5804099361ca7471af but approach -0, because this approach means libraries built for fuzz testing do not function correctly if used in a release, and libraries built for releases are mostly useless for fuzz testing. So I would like to at least consider other solutions to this problem even if we go with this one.
  dergoegge:
    utACK fafbf8acf419d5e2ca307e5804099361ca7471af

Tree-SHA512: 124fc2e8b35e0c4df414436556a7a0a36cd1bec4b3000b40dcf2ab8c85f32e0610bf7f70d2fd79223d62f3c3665b6c09da21241654c7b9859461b8ca340d5421
2024-11-05 06:05:27 -05:00
2024-07-30 16:14:19 +01:00
2024-09-26 18:52:08 +02:00
2023-06-01 23:35:10 +05:30
2021-09-09 19:53:12 +05:30
2024-10-24 18:23:31 +02:00

Bitcoin Core integration/staging tree

https://bitcoincore.org

For an immediately usable, binary version of the Bitcoin Core software, see https://bitcoincore.org/en/download/.

What is Bitcoin Core?

Bitcoin Core connects to the Bitcoin peer-to-peer network to download and fully validate blocks and transactions. It also includes a wallet and graphical user interface, which can be optionally built.

Further information about Bitcoin Core is available in the doc folder.

License

Bitcoin Core is released under the terms of the MIT license. See COPYING for more information or see https://opensource.org/licenses/MIT.

Development Process

The master branch is regularly built (see doc/build-*.md for instructions) and tested, but it is not guaranteed to be completely stable. Tags are created regularly from release branches to indicate new official, stable release versions of Bitcoin Core.

The https://github.com/bitcoin-core/gui repository is used exclusively for the development of the GUI. Its master branch is identical in all monotree repositories. Release branches and tags do not exist, so please do not fork that repository unless it is for development reasons.

The contribution workflow is described in CONTRIBUTING.md and useful hints for developers can be found in doc/developer-notes.md.

Testing

Testing and code review is the bottleneck for development; we get more pull requests than we can review and test on short notice. Please be patient and help out by testing other people's pull requests, and remember this is a security-critical project where any mistake might cost people lots of money.

Automated Testing

Developers are strongly encouraged to write unit tests for new code, and to submit new unit tests for old code. Unit tests can be compiled and run (assuming they weren't disabled during the generation of the build system) with: ctest. Further details on running and extending unit tests can be found in /src/test/README.md.

There are also regression and integration tests, written in Python. These tests can be run (if the test dependencies are installed) with: build/test/functional/test_runner.py (assuming build is your build directory).

The CI (Continuous Integration) systems make sure that every pull request is built for Windows, Linux, and macOS, and that unit/sanity tests are run automatically.

Manual Quality Assurance (QA) Testing

Changes should be tested by somebody other than the developer who wrote the code. This is especially important for large or high-risk changes. It is useful to add a test plan to the pull request description if testing the changes is not straightforward.

Translations

Changes to translations as well as new translations can be submitted to Bitcoin Core's Transifex page.

Translations are periodically pulled from Transifex and merged into the git repository. See the translation process for details on how this works.

Important: We do not accept translation changes as GitHub pull requests because the next pull from Transifex would automatically overwrite them again.

Description
Bitcoin Core integration/staging tree
Readme 2.2 GiB
Languages
C++ 64.1%
Python 19.9%
C 12.3%
CMake 1.1%
Shell 0.9%
Other 1.6%