Wladimir J. van der Laan 3a3eabef40
Merge #13386: SHA256 implementations based on Intel SHA Extensions
66b2cf1ccfad545a8ec3f2a854e23f647322bf30 Use immintrin.h everywhere for intrinsics (Pieter Wuille)
4c935e2eee456ff66cdfb908b0edffdd1e8a6c04 Add SHA256 implementation using using Intel SHA intrinsics (Pieter Wuille)
268400d3188200c9e3dcd3482c4853354388a721 [Refactor] CPU feature detection logic for SHA256 (Pieter Wuille)

Pull request description:

  Based on #13191.

  This adds SHA256 implementations that use Intel's SHA Extension instructions (using intrinsics). This needs GCC 4.9 or Clang 3.4.

  In addition to #13191, two extra implementations are provided:
  * (a) A variable-length SHA256 implementation using SHA extensions.
  * (b) A 2-way 64-byte input double-SHA256 implementation using SHA extensions.

  Benchmarks for 9001-element Merkle tree root computation on an AMD Ryzen 1800X system:
  * Using generic C++ code (pre-#10821): 6.1ms
  * Using SSE4 (master, #10821): 4.6ms
  * Using 4-way SSE4 specialized for 64-byte inputs (#13191): 2.8ms
  * Using 8-way AVX2 specialized for 64-byte inputs (#13191): 2.1ms
  * Using 2-way SHA-NI specialized for 64-byte inputs (this PR): 0.56ms

  Benchmarks for 32-byte SHA256 on the same system:
  * Using SSE4 (master, #10821): 190ns
  * Using SHA-NI (this PR): 53ns

  Benchmarks for 1000000-byte SHA256 on the same system:
  * Using SSE4 (master, #10821): 2.5ms
  * Using SHA-NI (this PR): 0.51ms

Tree-SHA512: 2b319e33b22579f815d91f9daf7994a5e1e799c4f73c13e15070dd54ba71f3f6438ccf77ae9cbd1ce76f972d9cbeb5f0edfea3d86f101bbc1055db70e42743b7
2018-07-09 21:17:18 +02:00
2018-01-24 16:35:40 +01:00
2018-07-06 14:26:26 +02:00
2018-07-06 14:26:26 +02:00
2018-06-14 19:43:12 +00:00

Bitcoin Core integration/staging tree

Build Status

https://bitcoincore.org

What is Bitcoin?

Bitcoin is an experimental digital currency that enables instant payments to anyone, anywhere in the world. Bitcoin uses peer-to-peer technology to operate with no central authority: managing transactions and issuing money are carried out collectively by the network. Bitcoin Core is the name of open source software which enables the use of this currency.

For more information, as well as an immediately useable, binary version of the Bitcoin Core software, see https://bitcoin.org/en/download, or read the original whitepaper.

License

Bitcoin Core is released under the terms of the MIT license. See COPYING for more information or see https://opensource.org/licenses/MIT.

Development Process

The master branch is regularly built and tested, but is not guaranteed to be completely stable. Tags are created regularly to indicate new official, stable release versions of Bitcoin Core.

The contribution workflow is described in CONTRIBUTING.md.

Testing

Testing and code review is the bottleneck for development; we get more pull requests than we can review and test on short notice. Please be patient and help out by testing other people's pull requests, and remember this is a security-critical project where any mistake might cost people lots of money.

Automated Testing

Developers are strongly encouraged to write unit tests for new code, and to submit new unit tests for old code. Unit tests can be compiled and run (assuming they weren't disabled in configure) with: make check. Further details on running and extending unit tests can be found in /src/test/README.md.

There are also regression and integration tests, written in Python, that are run automatically on the build server. These tests can be run (if the test dependencies are installed) with: test/functional/test_runner.py

The Travis CI system makes sure that every pull request is built for Windows, Linux, and macOS, and that unit/sanity tests are run automatically.

Manual Quality Assurance (QA) Testing

Changes should be tested by somebody other than the developer who wrote the code. This is especially important for large or high-risk changes. It is useful to add a test plan to the pull request description if testing the changes is not straightforward.

Translations

Changes to translations as well as new translations can be submitted to Bitcoin Core's Transifex page.

Translations are periodically pulled from Transifex and merged into the git repository. See the translation process for details on how this works.

Important: We do not accept translation changes as GitHub pull requests because the next pull from Transifex would automatically overwrite them again.

Translators should also subscribe to the mailing list.

Description
Bitcoin Core integration/staging tree
Readme 2.4 GiB
Languages
C++ 64.4%
Python 19.7%
C 12.1%
CMake 1.2%
Shell 0.9%
Other 1.6%