bc886fcb31e1afa7bbf7b86bfd93e51da7076ccf Change mapWallet to be a std::unordered_map (Andrew Chow) 272356024db978c92112167f8d8e4cc62adad63d Change getWalletTxs to return a set instead of a vector (Andrew Chow) 97532867cf51db3e941231fbdc60f9f4fa0012a0 Change mapTxSpends to be a std::unordered_multimap (Andrew Chow) 1f798fe85ba952273005f68e36ed48cfc36f4c9d wallet: Cache SigningProviders (Andrew Chow) 8a105ecd1aeff15f84c3883e2762bf71ad59d920 wallet: Use CalculateMaximumSignedInputSize to indicate solvability (Andrew Chow) Pull request description: While running my coin selection simulations, I noticed that towards the end of the simulation, the wallet would become slow to make new transactions. The wallet generally performs much more slowly when there are a large number of transactions and/or a large number of keys. The improvements here are focused on wallets with a large number of transactions as that is what the simulations produce. Most of the slowdown I observed was due to `DescriptorScriptPubKeyMan::GetSigningProvider` re-deriving keys every time it is called. To avoid this, it will now cache the `SigningProvider` produced so that repeatedly fetching the `SigningProvider` for the same script will not result in the same key being derived over and over. This has a side effect of making the function non-const, which makes a lot of other functions non-const as well. This helps with wallets with lots of address reuse (as my coin selection simulations are), but not if addresses are not reused as keys will end up needing to be derived the first time `GetSigningProvider` is called for a script. The `GetSigningProvider` problem was also exacerbated by unnecessarily fetching a `SigningProvider` for the same script multiple times. A `SigningProvider` is retrieved to be used inside of `IsSolvable`. A few lines later, we use `GetTxSpendSize` which fetches a `SigningProvider` and then calls `CalculateMaximumSignedInputSize`. We can avoid a second call to `GetSigningProvider` by using `CalculateMaximumSignedInputSize` directly with the `SigningProvider` already retrieved for `IsSolvable`. There is an additional slowdown where `ProduceSignature` with a dummy signer is called twice for each output. The first time is `IsSolvable` checks that `ProduceSignature` succeeds, thereby informing whether we have solving data. The second is `CalculateMaximumSignedInputSize` which returns -1 if `ProduceSignature` fails, and returns the input size otherwise. We can reduce this to one call of `ProduceSignature` by using `CalculateMaximumSignedInputSize`'s result to set `solvable`. Lastly, a lot of time is spent looking in `mapWallet` and `mapTxSpends` to determine whether an output is already spent. The performance of these lookups is slightly improved by changing those maps to use `std::unordered_map` and `std::unordered_multimap` respectively. ACKs for top commit: Xekyo: ACK bc886fcb31e1afa7bbf7b86bfd93e51da7076ccf furszy: diff re-reACK bc886fcb Tree-SHA512: fd710fe1224ef67d2bb83d6ac9e7428d9f76a67f14085915f9d80e1a492d2c51cb912edfcaad1db11c2edf8d2d97eb7ddd95bfb364587fb1f143490fd72c9ec1
Bitcoin Core integration/staging tree
For an immediately usable, binary version of the Bitcoin Core software, see https://bitcoincore.org/en/download/.
What is Bitcoin Core?
Bitcoin Core connects to the Bitcoin peer-to-peer network to download and fully validate blocks and transactions. It also includes a wallet and graphical user interface, which can be optionally built.
Further information about Bitcoin Core is available in the doc folder.
License
Bitcoin Core is released under the terms of the MIT license. See COPYING for more information or see https://opensource.org/licenses/MIT.
Development Process
The master
branch is regularly built (see doc/build-*.md
for instructions) and tested, but it is not guaranteed to be
completely stable. Tags are created
regularly from release branches to indicate new official, stable release versions of Bitcoin Core.
The https://github.com/bitcoin-core/gui repository is used exclusively for the development of the GUI. Its master branch is identical in all monotree repositories. Release branches and tags do not exist, so please do not fork that repository unless it is for development reasons.
The contribution workflow is described in CONTRIBUTING.md and useful hints for developers can be found in doc/developer-notes.md.
Testing
Testing and code review is the bottleneck for development; we get more pull requests than we can review and test on short notice. Please be patient and help out by testing other people's pull requests, and remember this is a security-critical project where any mistake might cost people lots of money.
Automated Testing
Developers are strongly encouraged to write unit tests for new code, and to
submit new unit tests for old code. Unit tests can be compiled and run
(assuming they weren't disabled in configure) with: make check
. Further details on running
and extending unit tests can be found in /src/test/README.md.
There are also regression and integration tests, written
in Python.
These tests can be run (if the test dependencies are installed) with: test/functional/test_runner.py
The CI (Continuous Integration) systems make sure that every pull request is built for Windows, Linux, and macOS, and that unit/sanity tests are run automatically.
Manual Quality Assurance (QA) Testing
Changes should be tested by somebody other than the developer who wrote the code. This is especially important for large or high-risk changes. It is useful to add a test plan to the pull request description if testing the changes is not straightforward.
Translations
Changes to translations as well as new translations can be submitted to Bitcoin Core's Transifex page.
Translations are periodically pulled from Transifex and merged into the git repository. See the translation process for details on how this works.
Important: We do not accept translation changes as GitHub pull requests because the next pull from Transifex would automatically overwrite them again.