virtu 61f4b9b7ad Manage exceptions in bcc callback functions
Exceptions are not propagated in ctype callback functions used by bcc.
This means an AssertionError exception raised by check_equal() to signal
a failed assertion is not getting caught and properly logged. Instead,
the error is logged to stdout and execution of the handler stops.

The current workaround to check whether all check_equal() assertions in
a callback succeeded is to increment a success counter after the
assertions (which only gets incremented if none exception is raised and
stops execution). Then, outside the callback, the success counter can be
used to check whether a callback executed successfully.

One issue with the described workaround is that when an exception
occurs, there is no way of telling which of the check_equal() statements
caused the exception; moreover, there is no way of inspecting how the
pieces of data that got compared in check_equal() differed (often
a crucial clue when debugging what went wrong).

Two fixes to this problem come to mind. The first involves having the
callback function make event data accessible outside the callback and
inspecting the event using check_equal() outside the callback. This
solution still requires a counter in the callback to tell whether
a callback was actually executed or if instead the call to
perf_buffer_poll() timed out.

The second fix entails wrapping all relevant check_equal() statements
inside callback functions into try-catch blocks and manually logging
AssertionErrors. While not as elegant in terms of design, this approach
can be more pragmatic for more complex tests (e.g., ones involving
multiple events, events of different types, or the order of events).

The solution proposed here is to select the most pragmatic fix on
a case-by-case basis: Tests in interface_usdt_net.py,
interface_usdt_mempool.py and interface_usdt_validation.py have been
refactored to use the first approach, while the second approach was
chosen for interface_usdt_utxocache.py (partly to provide a reference
for the second approach, but mainly because the utxocache tests are the
most intricate tests, and refactoring them to use the first approach
would negatively impact their readability). Lastly,
interface_usdt_coinselection.py was kept unchanged because it does not
use check_equal() statements inside callback functions.
2023-06-19 14:38:32 +02:00
2023-02-27 14:01:14 +00:00
2023-02-13 17:11:15 -05:00
2021-09-07 06:12:53 +03:00
2023-06-01 23:35:10 +05:30
2022-12-24 11:40:16 +01:00
2021-09-09 19:53:12 +05:30
2022-08-23 16:57:46 -04:00

Bitcoin Core integration/staging tree

https://bitcoincore.org

For an immediately usable, binary version of the Bitcoin Core software, see https://bitcoincore.org/en/download/.

What is Bitcoin Core?

Bitcoin Core connects to the Bitcoin peer-to-peer network to download and fully validate blocks and transactions. It also includes a wallet and graphical user interface, which can be optionally built.

Further information about Bitcoin Core is available in the doc folder.

License

Bitcoin Core is released under the terms of the MIT license. See COPYING for more information or see https://opensource.org/licenses/MIT.

Development Process

The master branch is regularly built (see doc/build-*.md for instructions) and tested, but it is not guaranteed to be completely stable. Tags are created regularly from release branches to indicate new official, stable release versions of Bitcoin Core.

The https://github.com/bitcoin-core/gui repository is used exclusively for the development of the GUI. Its master branch is identical in all monotree repositories. Release branches and tags do not exist, so please do not fork that repository unless it is for development reasons.

The contribution workflow is described in CONTRIBUTING.md and useful hints for developers can be found in doc/developer-notes.md.

Testing

Testing and code review is the bottleneck for development; we get more pull requests than we can review and test on short notice. Please be patient and help out by testing other people's pull requests, and remember this is a security-critical project where any mistake might cost people lots of money.

Automated Testing

Developers are strongly encouraged to write unit tests for new code, and to submit new unit tests for old code. Unit tests can be compiled and run (assuming they weren't disabled in configure) with: make check. Further details on running and extending unit tests can be found in /src/test/README.md.

There are also regression and integration tests, written in Python. These tests can be run (if the test dependencies are installed) with: test/functional/test_runner.py

The CI (Continuous Integration) systems make sure that every pull request is built for Windows, Linux, and macOS, and that unit/sanity tests are run automatically.

Manual Quality Assurance (QA) Testing

Changes should be tested by somebody other than the developer who wrote the code. This is especially important for large or high-risk changes. It is useful to add a test plan to the pull request description if testing the changes is not straightforward.

Translations

Changes to translations as well as new translations can be submitted to Bitcoin Core's Transifex page.

Translations are periodically pulled from Transifex and merged into the git repository. See the translation process for details on how this works.

Important: We do not accept translation changes as GitHub pull requests because the next pull from Transifex would automatically overwrite them again.

Description
Languages
C++ 65%
Python 19%
C 12.2%
CMake 1.3%
Shell 0.8%
Other 1.6%