47c4b1f52ab8d95d7deef83050bad49d1e3e5990 mempool: log/halt when CalculateMemPoolAncestors fails unexpectedly (stickies-v) 5481f65849313ff947f38433b1ac28285a7f7694 mempool: add AssumeCalculateMemPoolAncestors helper function (stickies-v) f911bdfff95eba3793fffaf71a31cc8bfc6f80c9 mempool: use util::Result for CalculateMemPoolAncestors (stickies-v) 66e028f7399b6511f9b73b1cef54b6a6ac38a024 mempool: use util::Result for CalculateAncestorsAndCheckLimits (stickies-v) Pull request description: Upon reviewing the documentation for `CTxMemPool::CalculateMemPoolAncestors`, I noticed `setAncestors` was meant to be an `out` parameter but actually is an `in,out` parameter, as can be observed by adding `assert(setAncestors.empty());` as the first line in the function and running `make check`. This PR fixes this unexpected behaviour and introduces refactoring improvements to make intents and effects of the code more clear. ## Unexpected behaviour This behaviour occurs only in the package acceptance path, currently only triggered by `testmempoolaccept` and `submitpackage` RPCs. In `MemPoolAccept::AcceptMultipleTransactions()`, we first call `PreChecks()` and then `SubmitPackage()` with the same `Workspace ws` reference. `PreChecks` leaves `ws.m_ancestors` in a potentially non-empty state, before it is passed on to `MemPoolAccept::SubmitPackage`. `SubmitPackage` is the only place where `setAncestors` isn't guaranteed to be empty before calling `CalculateMemPoolAncestors`. The most straightforward fix is to just forcefully clear `setAncestors` at the beginning of CalculateMemPoolAncestors, which is done in the first bugfix commit. ## Improvements ### Return value instead of out-parameters This PR updates the function signatures for `CTxMemPool::CalculateMemPoolAncestors` and `CTxMemPool::CalculateAncestorsAndCheckLimits` to use a `util::Result` return type and eliminate both the `setAncestors` `in,out`-parameter as well as the error string. It simplifies the code and makes the intent and effects more explicit. ### Observability There are 7 instances where we currently call `CalculateMemPoolAncestors` without actually checking if the function succeeded because we assume that it can't fail, such as in [miner.cpp](69b10212ea/src/node/miner.cpp (L399)
). This PR adds a new wrapper `AssumeCalculateMemPoolAncestors` function that logs such unexpected failures, or in case of debug builds even halts the program. It's not crucial to the objective, more of an observability improvement that seems sensible to add on here. ACKs for top commit: achow101: ACK 47c4b1f52ab8d95d7deef83050bad49d1e3e5990 w0xlt: ACK47c4b1f52a
glozow: ACK 47c4b1f52ab8d95d7deef83050bad49d1e3e5990 furszy: light code review ACK 47c4b1f5 aureleoules: ACK 47c4b1f52ab8d95d7deef83050bad49d1e3e5990 Tree-SHA512: d908dad00d1a5645eb865c4877cc0bae74b9cd3332a3641eb4a285431aef119f9fc78172d38b55c592168a73dae83242e6af3348815f7b37cbe2d448a3a58648
Bitcoin Core integration/staging tree
For an immediately usable, binary version of the Bitcoin Core software, see https://bitcoincore.org/en/download/.
What is Bitcoin Core?
Bitcoin Core connects to the Bitcoin peer-to-peer network to download and fully validate blocks and transactions. It also includes a wallet and graphical user interface, which can be optionally built.
Further information about Bitcoin Core is available in the doc folder.
License
Bitcoin Core is released under the terms of the MIT license. See COPYING for more information or see https://opensource.org/licenses/MIT.
Development Process
The master
branch is regularly built (see doc/build-*.md
for instructions) and tested, but it is not guaranteed to be
completely stable. Tags are created
regularly from release branches to indicate new official, stable release versions of Bitcoin Core.
The https://github.com/bitcoin-core/gui repository is used exclusively for the development of the GUI. Its master branch is identical in all monotree repositories. Release branches and tags do not exist, so please do not fork that repository unless it is for development reasons.
The contribution workflow is described in CONTRIBUTING.md and useful hints for developers can be found in doc/developer-notes.md.
Testing
Testing and code review is the bottleneck for development; we get more pull requests than we can review and test on short notice. Please be patient and help out by testing other people's pull requests, and remember this is a security-critical project where any mistake might cost people lots of money.
Automated Testing
Developers are strongly encouraged to write unit tests for new code, and to
submit new unit tests for old code. Unit tests can be compiled and run
(assuming they weren't disabled in configure) with: make check
. Further details on running
and extending unit tests can be found in /src/test/README.md.
There are also regression and integration tests, written
in Python.
These tests can be run (if the test dependencies are installed) with: test/functional/test_runner.py
The CI (Continuous Integration) systems make sure that every pull request is built for Windows, Linux, and macOS, and that unit/sanity tests are run automatically.
Manual Quality Assurance (QA) Testing
Changes should be tested by somebody other than the developer who wrote the code. This is especially important for large or high-risk changes. It is useful to add a test plan to the pull request description if testing the changes is not straightforward.
Translations
Changes to translations as well as new translations can be submitted to Bitcoin Core's Transifex page.
Translations are periodically pulled from Transifex and merged into the git repository. See the translation process for details on how this works.
Important: We do not accept translation changes as GitHub pull requests because the next pull from Transifex would automatically overwrite them again.