f5883286e32b625aab3dd80c74d6adb4f37f0a80 Add a fuzz test for Num3072 multiplication and inversion (Pieter Wuille) a26ce628942243fc9848a63bfdfa5e61f5e936f3 Safegcd based modular inverse for Num3072 (Pieter Wuille) 91ce8cef2d8955d980ab7e89fbf74e8b29adf178 Add benchmark for MuHash finalization (Pieter Wuille) Pull request description: This implements a safegcd-based modular inverse for MuHash3072. It is a fairly straightforward translation of [the libsecp256k1 implementation](https://github.com/bitcoin-core/secp256k1/pull/831), with the following changes: * Generic for 32-bit and 64-bit * Specialized for the specific MuHash3072 modulus (2^3072 - 1103717). * A bit more C++ish * Far fewer sanity checks A benchmark is also included for MuHash3072::Finalize. The new implementation is around 100x faster on x86_64 for me (from 5.8 ms to 57 μs); for 32-bit code the factor is likely even larger. For more information: * [Original paper](https://gcd.cr.yp.to/papers.html) by Daniel J. Bernstein and Bo-Yin Yang * [Implementation](https://github.com/bitcoin-core/secp256k1/pull/767) for libsecp256k1 by Peter Dettman; and the [final](https://github.com/bitcoin-core/secp256k1/pull/831) version * [Explanation](https://github.com/bitcoin-core/secp256k1/blob/master/doc/safegcd_implementation.md) of the algorithm using Python snippets * [Analysis](https://github.com/sipa/safegcd-bounds) of the maximum number of iterations the algorithm needs * [Formal proof in Coq](https://medium.com/blockstream/a-formal-proof-of-safegcd-bounds-695e1735a348) by Russell O'Connor (for the 256-bit version of the algorithm; here we use a 3072-bit one). ACKs for top commit: achow101: ACK f5883286e32b625aab3dd80c74d6adb4f37f0a80 TheCharlatan: Re-ACK f5883286e32b625aab3dd80c74d6adb4f37f0a80 dergoegge: tACK f5883286e32b625aab3dd80c74d6adb4f37f0a80 Tree-SHA512: 275872c61d30817a82901dee93fc7153afca55c32b72a95b8768f3fd464da1b09b36f952f30e70225e766b580751cfb9b874b2feaeb73ffaa6943c8062aee19a
Bitcoin Core integration/staging tree
For an immediately usable, binary version of the Bitcoin Core software, see https://bitcoincore.org/en/download/.
What is Bitcoin Core?
Bitcoin Core connects to the Bitcoin peer-to-peer network to download and fully validate blocks and transactions. It also includes a wallet and graphical user interface, which can be optionally built.
Further information about Bitcoin Core is available in the doc folder.
License
Bitcoin Core is released under the terms of the MIT license. See COPYING for more information or see https://opensource.org/licenses/MIT.
Development Process
The master
branch is regularly built (see doc/build-*.md
for instructions) and tested, but it is not guaranteed to be
completely stable. Tags are created
regularly from release branches to indicate new official, stable release versions of Bitcoin Core.
The https://github.com/bitcoin-core/gui repository is used exclusively for the development of the GUI. Its master branch is identical in all monotree repositories. Release branches and tags do not exist, so please do not fork that repository unless it is for development reasons.
The contribution workflow is described in CONTRIBUTING.md and useful hints for developers can be found in doc/developer-notes.md.
Testing
Testing and code review is the bottleneck for development; we get more pull requests than we can review and test on short notice. Please be patient and help out by testing other people's pull requests, and remember this is a security-critical project where any mistake might cost people lots of money.
Automated Testing
Developers are strongly encouraged to write unit tests for new code, and to
submit new unit tests for old code. Unit tests can be compiled and run
(assuming they weren't disabled during the generation of the build system) with: ctest
. Further details on running
and extending unit tests can be found in /src/test/README.md.
There are also regression and integration tests, written
in Python.
These tests can be run (if the test dependencies are installed) with: build/test/functional/test_runner.py
(assuming build
is your build directory).
The CI (Continuous Integration) systems make sure that every pull request is built for Windows, Linux, and macOS, and that unit/sanity tests are run automatically.
Manual Quality Assurance (QA) Testing
Changes should be tested by somebody other than the developer who wrote the code. This is especially important for large or high-risk changes. It is useful to add a test plan to the pull request description if testing the changes is not straightforward.
Translations
Changes to translations as well as new translations can be submitted to Bitcoin Core's Transifex page.
Translations are periodically pulled from Transifex and merged into the git repository. See the translation process for details on how this works.
Important: We do not accept translation changes as GitHub pull requests because the next pull from Transifex would automatically overwrite them again.